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1.   Introduction 

The DARPA Polymorphous Computing Architecture (PCA) program is a research initiative aimed 
at developing new computer architectures with a high degree of flexibility. Unlike current computer 
architectures that are rigid in nature. PCAs will have the capability to adapt ("morph"") to match 
the problem being solved. This flexibility will allow higher overall system performance in a broad 
range of applications. 

MIT Lincoln Laboratory has defined a set of kernel benchmarks for the PCA program 11 11. 
The kernel-level benchmarks have been chosen to stress both computation and communication as- 
pects o\' the architecture. The particular benchmarks chosen are based on the frequency of their use 
in current and future applications. They are drawn from the areas of signal and image processing, 
communication, and information and knowledge processing. Each of these areas imposes dif- 
ferent processing requirements on the architecture in terms of operations performed and memory 
bandwidth required. 

This document describes a set of measurements of the PCA kernel benchmarks on a proto- 
type PCA chip, the Raw processor developed by MIT Chapter 2 describes the measurement plat 
form, the metrics, and the test methodology in more detail. Chapters 3. 4. and 5 describe results 
for. respectively, signal processing, communication, and information and knowledge processing 
benchmarks. Finally, Chapter 6 gives a summary of the kernel benchmark measurements. Where 
appropriate, we compare these measurements to earlier measurements on the PowerPC G4 | l()| as 
well as to measurements on an Intel Xeon server. 





2.   Methodology 

This report provides measurements for the kernel benchmarks defined by MIT/LL 11 11 on the MIT 
Raw processor. We will be comparing these results with those previously taken on the PowerPC (i4 
embedded processor 11()|, and with results obtained on an Intel Xeon server. In this section, we 
describe the kernels, data sets, metrics, and platforms in more detail. 

2.1 Kernels and Data Sets 

The kernel benchmarks were distilled from a survey of Department of Defense applications. 
They fall into three broad categories: signal and image processing (SIP), communication, and 
information and knowledge processing (IKP). In general, one could characterize the operation 
performed by the SIP kernels as regular and predictable, and the operations performed by the IKP 
kernels as data-dependent. 

There are four SIP kernel benchmarks: finite impulse response (FIR) filter. QR factorization, 
singular value decomposition (SVD), and constant false-alarm rate (CFAR) detection. The com- 
munication benchmark is the corner turn. The IKP kernel benchmarks are pattern match, genetic 
algorithm, and database operations. 

For each benchmark, a set oi' problem si/es are defined in the original kernel benchmark re- 
port 11 11. We report performance on these sizes in Section 6.3. In each kernels section, we var) 
parameters at a finer level of granularity, in order to understand in more detail the effect of different 
data set sizes on performance. Throughout this section, we refer to the kernel by the index k, and 
refer to particular data sets for a given kernel as r/,. where i = 1.2 \). and \\ varies from 
kernel to kernel. 

2.2 Metrics 

The major metric o\' interest for each problem size is the total time or latency. L\(k,dj), to 
perform kernel k for a data set size <l,. In most cases, this time includes the time to send data into 
the chip from outside. 

Metrics that we calculate from latency include throughput, efficiency, and stability as defined 
in the original benchmark report | I I |. Workload values for each kernel benchmark are specified in 
that report: these values are used in the computation of throughput. We compute performance per 
unit power from the throughput values. 

2.3 Measurement Platforms 

2.3.1     Raw hoard 

The Raw board used for this project contains a single Raw chip consisting o( 16 Raw tiles. Fach 
tile is identified either with an (.;. //) address pair or with a single identifying number. The chip has 
sixteen ports numbered zero though fifteen through which it communicates with the outside world. 
The numbering of the tiles and ports is shown in Figure I. 
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Figure I.    Identification of tiles and ports on the Raw chip 



Each tile is capable of performing one operation per clock cycle and includes a 32-kbyte level- 
I cache. The default clock rate for the chip is 100 MHz. This reflects the constraints of the current 
board firmware. The board components are designed to run at up to 300 MHz with appropriate 
firmware. With suitable external hardware. MIT estimates that the current prototype Raw chip 
could be clocked at rates up to 425 MHz 113]. In the tests described in this document, the chip 
runs at 100 MHz and we calculate its peak performance as 1.6 Gflop/s. 

The tiles on Raw are connected by two static networks and two dynamic networks. One of 
the dynamic networks is used by the chip for memory accesses: the other is available to the pro- 
grammer. The term "static" applied to the networks implies that the programmer must set up the 
communication pattern used by the switch in advance of issuing the commands for communica- 
tion. Once programmed, the static networks are generally faster than the dynamic networks. For 
more information see Taylor et al. [20]. 

The Raw board puts the interface to memory only on the east side of the chip (ports 4-71, h 
also includes an expansion connector that gives access to the north and south sides of the chip. 
In order to test Raw in a streaming situation. MIT/LL built external hardware to move data into 
(he chip from the expansion connector. An Annapolis Microsystems WildStar-2 board serves as 
a buffer and a controller for the interface. The interface streams data into ports 0. 3. S. and I I of 
the Raw chip, using streaming data port cards connected to the Annapolis board, and a firmware 
design referred to as the speed gasket on the Raw board's Virtex-H 3000 FPGAs. More details o\ 
the testbed hardware can be found in Appendix A. We refer to this interface as the "high-speed 
input/output" or HSIO. 

The Raw board also has a USB interface that can be used for I/O for data sizes that are too large 
for the buffers on the HSIO board. We found this interface to have a high latenc) and thus tried to 
avoid using it. The only situation where its use could not be avoided was in the case o\' the CFAR 
kernel, which defined data sets that were too large for HSIO. For more details, see Section 3.4. 

The Raw chip was measured to consume 2.5 A when operating at 100 MHz and a core voltage 
o\' I .8 V while running the "vpenta" benchmark from the SPEC '92 benchmark suite [9]. We round 
upward and use a figure of 5 W for the typical operating power of the Raw chip at 100 MHz. 

2.3.2    Raw Simulator 

MIT provides a cycle-accurate simulator for Raw that was used in the early stages of this 
project. A major benefit of the simulator is that it allows us to scale the number of tiles in the Raw 
chip and to experiment with other board designs, including ones where all sides o\ the chip have 
an interface to memory. Use o\' the simulator also eases development, since there is only one Raw 
board available at MIT/LL. 

While the simulator is presented by MIT as being an accurate model of the Raw chip, we have 
found that it does not accurately model the board. Our comparison of the board and the simulator 
can be found in Section 6.1. Despite these disagreements between the board and simulator, the 
simulator still has a great deal of value for showing the potential of the Raw chip. We describe 
experiments on the Raw simulator scaled to an array of 64 tiles for the QR factorization kernel in 
Section 3.2 and for the pattern match kernel in Section 5.1. These experiments show the potential 
o\' Raw's architecture as feature sizes continue to shrink. 



2.3.3 G4 Platform 

As previously described, the target platform for the G4 measurements is a single node of a 
multi-node Mercury computing system 110). The system occupies a single VME chassis and has 
sixteen compute nodes. Each node is a 500 MH/ Motorola PowerPC G4 processor, model 7410. 
with a 32 kbyte level-1 cache on-chip and a 2 Mbyte L2 cache connected through a 250 MH/ 
bus [12]. Each node has 256 Mbyte of "local" DRAM, connected through a 125 Mil/ bus. The 
nodes are connected through a RACE++ crossbar network, though this is not used in any of the 
benchmarks. The daughter-cards used in these systems were first announced by Mercury in March 
of 2002. At the time of this report, the platform and the processors arc approximate!) four years 
old. 

The PowerPC G4 includes a vector processing unit referred to as the AltiVec unit 114|. This 
unit operates in parallel on data in 128-bit registers as if they were multiple smaller data registers. 
Operations are performed in a SIMD (single instruction stream, multiple data stream) fashion. For 
our purposes, this means that each register is treated as four single-precision (32-bit) floating-point 
numbers. Since the AltiVec floating-point units can retire four multiply-add instructions in a single 
cycle, we calculate its peak performance as 8 Hop per cycle times the clock speed of the processor, 
or 4 Gflop/s. 

The hardware specification for the Motorola 7410 processor gives a typical power dissipation 
of 5.3 W when running "typical benchmarks" and a maximum power dissipation o\' I 1.3 W when 
running a set of instructions contrived to keep the processor "maximally busy" 115]. When com 
puting achieved performance per unit power, we use the typical number rather than the maximal 
number. This decision follows from the efficiency numbers that our benchmarks achieve, which 
are far from 100% utilization of the processor. 

2.3.4 Xeon Platform 

The target platform for the Xeon measurements is a single node of a Dell PowerEdge 2650 
Server. This system contains two Intel Xeon processors operating at 2.8 GHz in a 21! rack. The 
2.8 GHz Xeon processor was introduced by Intel in November of 2002. making it slightly newer 
than the G4 processor previously described. It is a newer process technology generation (0.13 mi- 
cron) than the G4 (0.18 micron). It is also targeted at the server market, rather than the embedded 
market. 

Each processor has an 8 kbyte level-1 cache and a 512-kbyte level-2 cache, both located on 
the chip. The Xeon includes vector instructions referred to as streaming SIMD extensions or SSE 
instructions. These have a similar function to the AltiVec instructions on the G4. and in many 
cases there are roughly equivalent instructions on the two processors. However, unlike AltiVec. 
SSE does not include a multiply-add instruction. Thus we calculate the peak performance of the 
Xeon as 4 flop per cycle times the clock rate or I 1.2 Gflop/s. We use a power consumption figure 
of 74 W for the Xeon, reflecting Intel's cooling guidance lor the chip |8|. 



3.   Signal Processing Benchmarks 

The four signal processing kernels defined for PCAs are the FIR filter, the QR factorization, the 
SVI). and CFAR detection. Each presents a different set of characteristics in terms of operation 
counts and memory references. The results for these kernels are respectively discussed in Sec- 
tions 3.1. 3.2. 3.3. and 3.4. 

3.1    Finite Impulse Response Filter Bank 

3.1.1 Algorithm Description 

The FIR lilter benchmark measures the performance of a bank of FIR filters. Each FIR filter 
in. in G {0.1 \l - L} , has a set of impulse response coefficients wm[fc], k G {0,1 A' —1}. 
I! the length of the input vector is N, the output of filter in. //,„. is the convolution of wm with the 
input ./•„,: 

h-1 

.'/»<['] = Y. xm[i ~ k]wm[k]       for i = {(). 1 V - 1}. (1) 
k 0 

Direct implementation of equation I is referred to as a time-domain implementation of the FIR. 
Another common implementation uses fast convolution with the fast Fourier transform (ITT): this 
is referred to as a frequency-domain implementation. The most efficient implementation depends 
on various factors including the size of the lilter response vector. For the Raw Processor, we 
have chosen to base the frequency-domain implementation on a radix-4 EFT. Fora description and 
example of a radix-4 FFT. see |22|. 

3.1.2 Implementation Features 

Time-Domain FIR Filter 

Serial Implementation. To understand the parallel implementation of the time-domain FIR 
filter kernel, it is helpful to first be familiar with a serial implementation. The time-domain FIR 
filter kernel consists o\' vector-scalar multiplies of the input sample length V vector b\ each of the 
in lilter elements. This results in in vectors (.!/,.() < i < in) of length N. These vectors arc then 
shifted right i elements. Once shifted, the vectors are accumulated to calculate the final result. 
Figure 2 shows the flow of serial time-domain FIR lilter operations. 

Parallel Raw Implementation.    The symmetric stream mapping shown in Figure 3 provides 
the ability to perform two parallel complex time-domain FIR filters. This mapping requires the four 
corner tiles (hereafter referred to as memory tiles) to supply streaming data and manage memorj 
for the Raw processor. The remaining 12 tiles (hereafter referred to as the computation tiles) w ill 
perform the complex time-domain FIR computations. 

The parallel Raw time-domain FIR lilter kernel is similar to the serial kernel implementation 
described above.  Using the mapping in Figure 3 however, it is possible to do six o\' the vector 
scalar multiplies in parallel. After the initial six vector-scalar multiplies have been performed, the 
results are accumulated as they stream down towards the lower memory tiles.  Once arriving at 
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Figure 2.    Serial time-domain FIR filter operations. 
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Figure 3.    Usa^e of a 4x4 Raw chip for performing a time-domain FIR filter. The four 
corner (in yellow: tiles 0, 3, 12. and 15) tiles are used for memory and I/O. The remaining 
tiles are used for computation. 

the memory tiles, the sum is stored in an intermediate vector in memory. The next six parallel 
results are computed, and again accumulated as they stream down towards the lower memory tiles. 
This time, the intermediate result index is shitted right six elements (to compensate Tor the previous 
intermediate result) betöre being accumulated with the previous intermediate vector. In general, an 
index for an intermediate vector arriving at the lower memory tiles is shifted six elements for each 
previous intermediate vector. It is then accumulated with the summation thus far. This procedure 
is conducted until each of the Miter elements have been accounted for. Figure 4 shows the How of 
parallel time-domain FIR filter operations. 

Frequency-Domain FIR Filter 

The following section will discuss the three major components of the frequency-domain FIR 
filter: 
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Figure 4.    Parallel time-domain FIR filter operations. 

1. an FFT of the input. 

2. an element-wise multiply of the FFT result and the filter, and 

3. an IFFF of the element-wise multiply result. 

We will also discuss optimizations made to the FIR filter including loop unrolling and internal 
twiddle factor consistencies. 

Similar to the time-domain algorithm, the symmetric mapping displayed helow in Figure 5 
provides the ability to perform two parallel frequency-domain FIR filters simultaneously. This 
mapping also requires the four corner memory tiles to supply streaming data and manage memoiy 
for the Raw processor. The 8 tiles in the middle columns (hereafter referred to as the computation 
tiles) will perform the FIR computations. The two center tiles on the left and right sides will be 
used to buffer and store intermediate butterfly results. 

Fast Fourier Transform.    The outline of a FFT of length N can be v iewed as: 

for   (log  N  phases) 
for (N / 4 butterflies) 

Butterfly () 
end 

end 
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Figure 5.    Usage of a 4x4 Raw chip for performing FFT. The four comer tiles (in 
while: tiles 0, 3, 12. and 15) are used for memory and I/O. The two middle tiles on both the 
east and west sides of the chip (in grey: tiles 4. 7, <S'. and 11) are used for memory. The 
remaining 8 center tiles (in bine: tiles I. 2. 5, 6. 9, 1(1. 13, and 14) are used for computation. 

The main function in an FFT is the butterfly operation. The butterfly operation consists of the 
input samples being multiplied by twiddle factors. A twiddle factor has the general form: 

"7 (2) 

The length-.Y FFT consists of log, ,'V phases o\' Y/ 1 butterflies per phase. Each butterfly takes 
four inputs and computes four outputs. 

In the initial even phase (see Figure 5). input samples are streamed into the computation tiles 
in the order they are required to perform butterfly operations (to he described in the following 
section). As they are streamed into the four computation tiles, each tile computes one of (he four 
intermediate results. The results are sent to the bottom memory tiles (tiles 8. II. 12. and \5) as 
depicted by the result stream shown in the even phase data flow o\' Figure 5. 

Once each set of butterflies has been computed in the initial phase, data strides are recomputed 
on the bottom four memory tiles (tiles 8. II. 12. and 15). The results from the initial phase then 
become inputs to the subsequent phase, and are streamed up into the compute tiles in the order they 
are required to perform butterfly operations. Again, as they are streamed into the four computation 
tiles, each tile computes one of the four intermediate results. The same process described above is 
performed, only this time the final destination for the results will be the top lour memory tiles (tiles 
0. 3. 4. and 7). This data flow is the odd phase depicted in Figure 5. This process is conducted for 
each phase. When all the phases are completed, the result is a vector whose elements are stored in 
hase-4 reversed order. The FFT result will always reside on the top two memory tiles (tiles 0 and 
3). 

Butterfly Operation. In a radix-4 FFT implementation, a butterlly operation requires 4 input 
elements and a series of twiddle factors. For example, in phase zero of a length-16 FFT. butterfly 
zero performs the following computations using elements ,r0../-,. xg and x12 : 

Id 



4 = (,> ,u,,*l,) + .r,(
,«'(4*0*,) + xlw^°*V + x0

uw«*0*V) * w° (3) 

xi = (.,-;j«-t-,*,*°> + xV4*un + .*V4*,*2) + .r,;,«-|-,*u:,)) *»'° .4) 

,•> = (ar<y4*2'°) + ,->(4*2*» + xW U2t'2) + xWM*3))* «'" (5) 

x\2 = (x<y4*3*°) + x>«u:un + x°sw
{4*3*2) + /;.yu:M]) * «.° (6) 

where w are twiddle factors and x are input and output elements whose superscript represents 
the number of phases completed. Each butterfly operation calculates tour butterfly elements that 
involve the sum o\' four product terms. 

The exponent of the twiddle factors within the parenthesis is calculated as: 

Y 
( ——) * (Butterfly Element) * (Product Term Index). (7) 

Radix 

To calculate the power o\' the twiddle factor outside the parenthesis, we use: 

Butterfly, 
floor(—-. -. (S) 

The twiddle factors for each of the elements in the final phase should all be one. II we refer to 
the lour inputs to a butterfly as ./„../,,. x,. and ./,, and the four results as {.rk. 0 < k < 3}. then a 
general formula for radix-4 butterfly computation b in phase j> is: 

s'i] = (.r>'>*°^,>; >*'' +,->< >*?1 +x>(l ^:i!) * w&. ,0, 

Figure 6 depicts the initial butterfly operation in both phase zero and phase one for a In sample 
input. The stride between input elements in phase zero is ^ . As we move from one phase to the 
next, the stride between input elements is always | that of the stride from the previous phase The 
stride in the final phase is always one. The selection of sets of butterfly inputs varies from phase to 
phase. For a more in-depth description of butterfly operations, see [22]. 

Element-Wise Multiply. As noted above in the Butterfh section, the external twiddle factors 
for each of the elements in the final phase are all one. This means there are .V complex operations 
where intermediate values are being multiplied by one. We can use this to our advantage b\ 
embedding the element-wise multiply of the FIR filter into the final phase of the FFT. During the 
final phase of the FFT, rather than calculating the external twiddle factor (always equal to one), an 
index is calculated to fetch the appropriate filter value from memory. This value is then used in 
place of the twiddle factor to complete the butterfly operation. 

The portion o\' the filter required by a given tile is stored in memory in a base-4 reversed order 
during initialization. This corresponds to the output o\' the FFT. which is also stored in base-4 
reversed order. 
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Figure 6.    Initial butterfly operation in phase zero and phase one for a If) sample Input. 
The stride between elements in phase zero is 4, calculated from   ( . In phase one, the stride is 
reduced to j that of the previous phase's stride. 

Inverse Fast Fourier Transform The IFFT implementation is very similar to the ITT de 
scribed above. We note three major differences. One major difference is that the input indices 
to the IFFT are hase-4 reversed. To compensate for this, during the initial phase o\' the IFFT, the 
normal indices are not used to letch samples from memory for the butterfly operations. Instead. 
we use the indices' pre-computed base-4 reversed values to index the appropriate samples. These 
samples are then streamed into the computation tiles. Figure 7 shows an example for a Id sample 
input. Note that because of the base-4 reversed input to the IFFT. the result will be base-4 reversed. 

Another difference between the FFT and the IFFT implementations is the calculation of twiddle 
factors. The values used in the IFFT are the conjugates o\' the values used in the FFT. Based 
on performance measurements, reusing the FFT twiddle factors and multiplying the imaginär) 
components by negative one is more efficient than fetching new conjugated values from memory. 

The final difference between the FFT and IFFT is that the IFFT requires each element to be 
multiplied by I alter the last phase of butterfly computations. To optimize this, the multiply 
operation has been embedded into the butterfly weight multiplication in the final phase as was 
done with the element-wise multiply in the FFT routine. 

FIR Optimizations 

It is necessary to make three significant optimizations lo the FIR filter in order to improve 
Performance. The first is motivated by the consistency in all of the internal twiddle factors. The 
formula for the exponent of the internal twiddle factors is depicted in Equation (7). Because of the 

/;2h: component in Equation (7). the internal twiddle factors are the same no matter the current 
phase, butterfly, or butterfly product. It is also true that each ol' the twiddle factors falls on an axis 
of the unit circle. The first twiddle factor falls on (1.0). the second on (0. 1). the third on (-1,0). 
and finally the fourth on (0. —1). Therefore the multiplication of the internal twiddle factors can be 
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Normal indices for 
a 16 sample input: 

Base-4 reversed indices 
for a 16 sample input: 

Base 10 Base 4 

0 00 
4 10 
8 20 
12 30 
1 01 
5 11 
9 21 
13 31 
2 02 
6 12 
10 22 
14 32 
3 03 
7 13 

11 23 
15 33 

Base 4 Base 10 

00 0 
01 1 
02 2 
03 3 
10 4 
11 5 
12 6 
13 7 
20 8 
21 9 
22 10 
23 11 
30 12 
31 13 
32 14 
33 15 

Figure 7.    Normal indices far a If) sample input and their base-4 reversed equivalents. 

replaced with a sequence of equivalent additions and subtractions. Equation (4) can be expressed 
as the following: 

x;.r 

•'V 

{x0.r + .rs.t 

(.'•o-' - x4.r 

.712-') * W   , 

0 x$.i + Xu-r) * it 

(10) 

(II) 

where V and */' respectively represent the real and imaginary components of the inputs and result. 
This eliminates the need to fetch the four twiddle factors from memory to be multiplied by the 
inputs. The IFFT is very similar; however, due to the conjugated values, the second and fourth 
internal twiddle factors have switched signs. For the IFFT, the Equations (10) and (II) are replaced 
by: 

x\.r = (x0.r - x4.i - x&.r + .rV2.i) * w°, 

(x0.i +x4.r - x8.i - xl2.r) * w°. x;.i 

(12) 

(13) 

Another optimization performed was loop unrolling. If one butterfly operation is performed 
at a time, delays arise from subsequent steps within the butterfly requiring results from previous 
steps. For example, in Equation (12). XQ.T - .r\.i is performed on cycle it: however, the result is 
not available until cycle n + 4. Therefore, if x%.r is subtracted on cycle n + 1, the processor will 
be required to stall until the result from x0.r — .rt./ has become available. An initial attempt to 
solve this issue was to perform four parallel butterfly operations simultaneously, referred to as a 
Ix unroll. This means that x8.r will be subtracted on cycle it + 4 rather than on cycle // + 1. and 
other parallel butterfly operations will be issued during the intervening cycles. This technique. Ix 
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unrolling, eliminates any data dependencies found in the complex multiply operation. However, 
performing four simultaneous butterfly operations requires 16 complex inputs to the compute tiles 
and produces 16 complex outputs. Although the compute tiles perform optimally, this comes at 
the cost of memory storage delays. We investigated a 2x unroll operation where two parallel 
butterflies are performed simultaneously. Although a few dependency delays arose, the 2x unroll 
version that was finally implemented did not experience the memory issues that the Ix unroll did. 

The last significant optimization was made to improve the time required to store butterfly re- 
sults. Initially, results were only stored by the corner memory tiles. The side tiles were simply 
used to buffer results until the corner tiles were ready to store. This resulted in a backup o\' but- 
terfly results, extending all the way through the sending memory tiles, causing delays in supplying 
inputs for the subsequent set of butterflies. To alleviate this backup, both side tiles were made to 
share the task of storing butterfly results. Because the backup of results does not extend through 
the supplying memory tiles, inputs for the next set of butterflies can be supplied earlier than if onl) 
one storing memory tile is used on each side of the chip. 

3.1.3    Results 

rime-Domain FIR Filter Results 

Figure S shows the throughput in Mllop/s for the time-domain FIR kernel for both a single 
filter, and also dual Alters across the entire Raw processor. As the time-domain FIR filter kernel is 
performed on a filter length A.' = 256. the results show that the throughput of the kernel is dependent 
on the input length. Plots for other filter lengths would show similar results. This is because each 
distribution of six filter elements requires loading Y input vector elements from memory. As 
we approach an input length of 40% elements, the throughput reaches 475 Mllop/s (950 Mllop/s 
across the entire chip). 

The throughput in Figure S has one drop-off at input length 4096. Beyond this point, the input 
no longer tits into the 32 kBytes of cache memory, as 

SBytes/element * lOOOelements = 32kBytes. 

Frequency-Domain FIR Filter Results 

Figure 9 shows the throughput in Mllop/s o\' the frequency-domain FIR kernel. As seen in 
the time-domain results, results for both a single filter and also dual filters across the entire Rau 
processor are given. The frequency-domain FIR kernel analysis differs from the time-domain FIR 
filter kernel in that the results below are dependent upon the input length. 11 the filter length were 
to increase or decrease, the performance o\' the kernel would not be effected. Based on these 
observations, the results between the two FIR Filter kernels are similar. For short filter sizes (64 
to 1024 elementsi. the throughput increases as the vector size increases. As we approach a filter 
length of 1024 elements, the throughput reaches 102 Mflop/s (204 Mllop/s across the entire chip). 

The low resolution o\' the results shown in Figure 9 is due to the fact that the FIT and IFF! 
were implemented in radix-4. which can only compute input lengths that are powers of four. For 
example, an input vector of length 1025 will be padded to the next greatest power of four: in turn 
taking just as long as an input vector of length 4096.  With this said, the drop-off seen between 
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Figure 8. lime-domain FIR filter results for a filter length of 256 using the I x-l Raw 
Handheld Board. The total chip throughput is based on parallel FIR filters teach side of the 
chip performs a FIR filter). The single FIR throughput is based on one FIR filter being 
performed on one half of the chip. 
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Figure 9.    frequency-Domain FIR Filter results using a 4 x 4 Raw Handheld Board. 
The total chip throughput is based on parallel FIR filters {each side of the chip performs a 
FIR filter). The single FIR throughput is based on one IIR filter being performed on one half 
of the chip 
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1024 and 4096 is probably due to the lack of data points leading up to 409(1. At 4096 elements, the 
effect of cache misses is seen as the input vector no longer tits into cache, as 

8Bytes/element * 1096elements = 32kBytes. 

Frequency-Domain FIR Filter Workload Fquation Due to the distributed nature of this 
kernel, an accurate performance analysis can only be provided with the use of a modified FFT/IFFT 
workload equation. The normal workload equation assumes that computations performed in a 
butterfly routine can be reused. This is not the case in this distributed kernel. 

The conventional radix-4 FFT workload is 8.5.Y log, .V. where log4 N is the total number o\ 
phases, and 8.Ö.Y is the number of flops per phase. The number of phases in the distributed kernel 
docs not change; however, the number o\' Hops per phase docs. 

A phase can be viewed as: 

for (N / 4 butterflies) 
Butterfly() 

end. 

The quarter of a butterfly routine on any given process performs 6 adds/subtracts for the inner 
component o\' Equation (10). and also 6 adds/subtracts for the outer complex multiplication. The 
12 operations are performed on each of the 4 tiles for a total of 48 Hops, or 18 * ^ log, A total 
Floating point operations; therefore, the total FFT workload is 

l2N\og4N. (14) 

The IFFT formula will be the same as the FFT equation with the addition o\' the A divides, 
performed as multiplies o\' ~, at the end of the routine. With each complex divide being 2 Hops, 
this results in an IFFT workload formula of 

L27Vlog4 JV + 2AT. (15) 

Finally, the element-wise multiply between the FFT and IFFT requires (i.Y operations. Slim- 
ing the three portions of the frequency-domain FIR Filter, the total workload is m 

24JVlog4 A + K.Y. ( 16) 

3.2    QR Decomposition 

The QR decomposition is an important factorization used lor least squares solutions of overde- 
termined systems of equations [5]. The Raw QR implementation is based on an algorithm mapping 
and real data implementation designed and written by Hank Hoffmann |7|. The implementation 
described in this document processes complex data. 
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3.2.1    Algorithm Description 

The QR computation produces the decomposition of an in x n matrix .1 into the product 
A = QR. where the /// x m matrix Q is orthogonal and the m x ;; matrix R is upper triangular [5]. 
The particular algorithm used for this implementation is Fast Givens. The Fast Givens algorithm 
loops over columns o\' the input matrix ,4. zeroing the lower triangular elements by computing 
and applying Fast Givens transformations over the rows. These transformations are also applied 
to a matrix M, that is initialized to the identity matrix, to compute the matrix Q. The Fast Givens 
transformations consist of the values a and 8, computed to zero out the element .!(/./) as. 

n 

and 

ß = 

A(i,j)     ' 

-con/(alpha) il(i] 

(17) 

(ISi 
d(i-l) 

where r/(l : //) are the diagonal elements of a diagonal scaling matrix. I), initialized to the identity 
matrix. /) values are updated in every Fast Givens transformation calculation as, 

7 = -aß, 

r = d{i- 1). 

d(t-l) = (l + 7)d(i), 

d(i)= (1 + I)T. 

The transformations are then applied to the rows of A and columns o\' \l by, 

A{i- 1 : I.J : n) = 
3   I 
1      Q 

A{i- 1 :>.j:n). 

and 

M(:.i - 1 : ») = M{:.i - 1 : /) 
8    1 
1    Q 

(19) 

(20) 

(21) 

(22) 

i2}) 

(24) 

when zeroing element A(i, j). After zeroing all lower triangular elements of the input matrix A, 
the scaling matrix. I), is applied to A and M. to compute: 

and 

Q = MD]/'2, 

R = D~X'2A. 

(25) 

(2d) 

A Matlab program for computing the Raw Fast Givens implementation is shown in Figure 10. 
The algorithm described above, as well as the Matlab code shown in Figure 10 use only one type 
of transformation. This is done to improve the efficiency o\' the algorithm, but may result in a loss 
o\' numerical stability |7|. 
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[m, n] = size(A);  % Compute the dimensions of the input matrix 

d(l:m) = 1;        % Initialize a vector for the diagonal elements of D 

M = eye(m);        % Initialize the matrix M to the identity matrix 

for ( j = l:n) 

for(i=m:-1:j+1) 

% Compute the Fast Givens transformation to zero A(i,j) 

[alpha, beta, d(i-l), d(i)] = fastGivens(A(i-1:i, j), d(i-l:i)); 

% Apply the Fast Givens transformation to A and M 

A(i-l:i,j:n) = [beta 1; 1 alpha] * A(i-l:i, j:n); 

M(:, i-l:i) = M(:, i-l:i) * [beta 1; 1 alpha]'; 

end 

end 

% Create a diagonal matrix D from diagonal elements in vector d 

d = d." (-1/2); 

D = diag(d); 

% Apply scaling matrix, D, to M and A, to compute Q and R 

Q = M*D; 

R = D*A; 

Figure 10.    Matlab code for computing the Fast (livens (JR. The values computed whhin 
the "fastGivens" call (a, ß, and updated I) values) arc computed as shown in Equations 17. 
IS. 21, and 22. 

3.2.2    Mapping to Raw 

The algorithm mapping specified in |7| requires a storage device accessible to each outer Com- 
putation tile. The original real QR Decomposition program simulated a 1 x 1 Raw chip, sur 
rounded hy simulated streaming DRAM devices. The implementation described in this document 
was designed to run on the Raw Handheld board, or a similar configuration, which does not have 
a streaming DRAM interlace. To resolve this issue the outer tiles o\' Raw are used for I/O and 
data storage (to replace the streaming DRAM devices), and the inner block of tiles are used for 
computation. Figure I I illustrates this for a I x I Raw chip. 

Because the Raw chip design is meant to be scalable, the QR code was also designed with 
scalability in mind to allow the QR to be simulated on different Raw chip sizes. Testing on different 
chip sizes allows us to estimate how the performance of the QR design will scale. Figure 12 
shows how an arbitrary sized Raw chip is used for the QR. There is one important difference from 
Figure I I that should be discussed in detail; the configuration in Figure 12 does not assume the 
same I/O interlace as a 1 x 1 Raw. The 4 x 1 Raw inputs and outputs to FPGAs on the Raw 
Handheld hoard via the 4 corner tiles. It is assumed thai a hoard design for a larger Raw chip 
would allow more of the top and bottom tiles to perform I/O. The current implementation could 
easily be adapted to the I x 4 I/O interface, but the first iteration of computation would take a 
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I'iiiiuv II.    l'\(ii>e of a 4 x 4 Raw chip for performing complex QR Decomposition. The 
inner 2x2 block of tiles (in red: tiles 5, 6, 9, and 10) are used for compulation. The corner 
tiles tin green: tiles 0, 3, 12, and 15) are used for I/O. Tiles tin blue) I. 2. 7. //. 13, and 14. 
are used as cache tiles that stream data to and from their on-tile memory and the 
Compulation tiles. All other tiles (grey) are unused. 
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Figure 12.    Usage of an arbitrary sized R x R Raw chip for performing complex QR 
Decomposition. The inner R — 2 x R — 2 tiles (red) are used for computation.  Hies I 
through R - 2 of the top and bottom rows (blue) are used for I/O (possibly; sec 'he text) anil 
data storage. Tiles I through R — 2 of the right-most column arc used only for data storage. 
All other tiles (grey) are unused. 



performance hit because of the lower relative bandwidth to the Computation tiles. One way to gel 
around making any board design assumptions is to time the QR in a different manner. For larger 
Rau chip sizes, the upper tiles receive the matrix A. store it completely to memory, then begin 
to stream the data into the Computation tiles. Using this method, the timing of the QR begins 
when the data is streamed into the computation tiles. The difference from the board results is not 
expected to be significant because the off-chip I/O is only required in the first iteration. 

3.2.3    Implementation 

Because the specific mapping required by the Raw Handheld board slightly changes the general 
mapping designed in |7|. this section will give general implementation details ami explain what 
happens at important stages of the algorithm for the specific 1 x 1 Raw chip. The resulting data 
storage issues will be discussed as well. 

Initialization and Timing 

The QR program receives inputs from the north and outputs results to the south. The organi- 
zation of the inputs is handled by the PCA testbed. and passed into Raw via the High Speed I/O 
(HSIO) system (see Appendix A. B). The testbed appends the matrix dimensions. //; and n. to the 
start of the data that is streamed into the I/O tiles of the chip. During the initialization phase o\' the 
algorithm. /// and /; are read in from the I/O tiles, and distributed to all the "'working" tiles (all tiles 
in Figure I I excluding those marked "UNUSED"). Once the working tiles receive m and n. the 
Cache tiles allocate appropriate memory. After allocating memory, initialization is complete, and 
each northern Cache tile stores the current Raw cycle count. Upon completion of the QR compu- 
tation, the southern Cache tiles again store the current Raw cycle count. All start and finish cycle 
counts are sent from north and south Cache tiles to the south west Cache tile. This tile computes 
the total number of cycles, or time taken during the computation. The cycle count is appended to 
the start of the output data at the end of the program, and extracted by the RCA testbed. 

QR Computation 

The pseudocode shown in Figure 13 gives a high-level view of how the Matlab QR algorithm 
shown in Figure 10 is executed on Raw. The following sub-sections give details on how Fast 
Givens rotations are computed and applied on the Raw Handheld board. 

As mentioned in the pseudocode comments in Figure 13. for each loop, the direction that data 
streams switches (i.e. north—»south to south—»north). During iteration /. if data is (lowing from 
north to south, the updated values o\' .1 and ,\/ are stored in the southern Cache tiles. Therefore, 
in the next iteration the updated values are used, forcing data to stream from south to north. For 
each iteration, two rows of ff, and two columns of Q are computed. Because o\~ the change in data 
flow direction, every other two rows or columns o\' R and Q are stored in the north or south Cache 
tiles. The resulting storage (for an example 8x8 input) of R and Q is shown in Figures 14 and 15 
respectively. Note that because of the manner in which the Fast Givens rotations are applied. Q 
is stored in row-major fashion and A (which is rotated to eventually contain R) is stored column- 
major. Upon completion of the QR, appropriate values of () and R are streamed from the northern 
Cache tiles to the southern Cache tiles, and all correct rows and columns of Q and R are combined. 
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COMP_R = 2 
for i = 1:C0MP R:n 

# Size of the computation block of tiles 
# Loop through columns (in sets of 2) 
# of A. For each loop, the direction 
# that data is streamed switches. 

fastGivens() 
for j = i:(2*C0MP_R):n 
applyRotations(A) 

end 

# Compute Fast Givens rotations. 
# Loop on columns starting at column i 
# Apply rotations to A, to compute 
# r and updated A. 

for j = 1:(2*C0MP_R):m 
applyRotations(M) 

end 
end 

# Loop through rows of M. 
# Apply rotations to M, to compute q 
# and updated M. 

finish_Q(M) # If m != n, final m-n columns of Q 
# need updating. 

Figure 13.    High-level pseudocode for Rau implementation of the Matlab algorithm 
shown in Figure 10. 

The matrices. Q and R. are then output via the southern I/O tiles, taken by the HSIO system, and 
reorganized into Matlab matrices within the PC A testbed. Combining the data in this manner is an 
inefficient operation. The appropriate data could be streamed out of both north and south I/O tiles, 
and the combination of data could occur within the testbed. In fact, streaming R and Q values out 
\ ia north or south I/O tiles as they are computed after each iteration would cut down on the amount 
of memory required by the algorithm. However, the QR was designed to be a possible sub-kernel 
of the Singular Value Decomposition, so R and Q are not streamed off the Raw chip. If the QR 
were used as a sub-kernel, the small overhead of combining the data on-chip is small relative to 
the overall computation. The time taken to combine the data on-chip is not included in the timing 
of the QR. 

Fast Givens Rotation Computation. Figure 16 shows the data flow and computation that 
occurs during the calculation of the set of Fast Givens rotations for the first two columns o\'. \. For 
subsequent iterations, data (lows from the Cache tiles, and the data (low direction switches back 
and forth between north—»south and south—»north. All west<-»east data flow directions remain 
unchanged. When the data flow direction changes, the mapping of computation changes as well. 
Switching the direction of data flow occurs by changing each tiles* conceptual notion of what row 
the) are contained in. to maximize the reuse of code. When the data flow is south—»north, each 
tile recomputes its row by computing conceptualRow = {R — 1) — physical Row, where R is the 
number o\' rows or columns of tiles on the chip. 

The Fast Givens rotations are computed by streaming columns of the input matrix. A, inter- 
leaved with diagonal elements of the scaling matrix, D, from the I/O or Cache/Storage tiles into 
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0 0 0 0 r 
0 0 0 0 0 

0 0 0 0 0 0 • 
0 0 0 0 0 0 0 

D 

Stored in 
Northern tiles 

Stored in 
Southern tiles 

Figure 14.    Storage ofR after (JR computation. Every other pair of rows of R is stored 
in cither the north or south Cache tiles, because the dataflow for the (JR changes for each 
iteration of the algorithm. The zeros shown ore not explicitly computed. 

g_q 
q q 

Stored in 
Northern tiles 

Stored in 
Southern tiles 

Figure 15.    Storage ofQ after (JR computation. Every other pair of columns ofQ is 
stored in either the north or south ('ache tiles, because the data /low for the (JR changes for 
each iteration of the algorithm. 
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1 
3 >   5 

7 8 

I - Computation 

- Unused 

1 Pass through. 

2 Pass A input down. Pass 
d(n-1 :-1:0) down. 

3. Compute alpha, beta, 
delta and pass to right. 
Pass delta down. Apply to 
final A input to compute r. 
Pass r down. 

4. Pass alpha, beta, delta to 
right. Also apply to A 
inputs to compute updated 
A and to tinal A input to 
compute r. Pass updated 
A and r down. 

5. Store alpha, beta, delta 

6. Pass delta right, r down. 

7. Store delta, r. 

8. Store r. 

Figure 16.    Dam flaw and computation that occurs while computing the Fast (livens 
Rotations. This example shows the first iteration [dataflows from the I/O tiles). Fast (livens 
transforms are stored in eastern tiles. Updated A, R, and D values are stored in southern 
tdes. For subsequent iterations, data would flow from north or south Cache tiles. 

the Computation tiles. During iteration /, computations are performed on columns A(n — 1 : —1 : 
2i,2i) and A(n — 1 :   — 1 : 2i'. 2:' + 1). i.e. columns 0,2 n are passed into column I of the 
chip, while columns 1.3 n are passed into column 2 of the chip. As A and D values are fed 
into the Computation tiles, rotation values a and ß are computed, as well as updated I) values, and 
are passed to the Cache tiles on the eastern side of the chip. During the final iterations for columns 
2/ and 2/ +1, 5 values are computed from the 2/th and 2/ + 1th rows of D. These values are applied 
to 1 to compute values R(2i : 2/ + 1. 21 : 2? + 1), then passed to the northern or southern Cache 
tiles. 

Application of Fast Givens Rotations. Figure 17 shows the data (low and computation that 
occurs during the application o\' the Fast Givens rotations that were computed in Figure 16. to 
columns i 4- 2 to i + 5 of A. These same rotations are also applied in a similar fashion to rows of 
the matrix ;\/. For subsequent iterations, data flow directions change as in the rotation computation 
phase. 

The rotations are applied by streaming columns of the input matrix. A, from the I/O or Cache 
tiles into the Compulation tiles. At the same time, rotation values a and 8 are streamed into the 
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A(n-1:-1:0. [i+2 i+4]) 
or 

A(n-1:-1:0, i+2) 

A(n-1:-1:0, [i+3i+5]i 
or 

A(n-1:-1:0, i+3) 

I/O 

Cache/Storage 

•\                                I   A 

V     '7 

3    < :    4 

3 

'1 

5 5 

I - Computation 

- Unused 

1. Pass through. 

2. Apply alpha and beta from 
the right to A input from 
above. Pass updated A 
values down. Apply 
alpha, beta and delta to 
final A input to compute r. 
Pass r down. 

3. Pass alpha, beta, delta 
from right to left. Do #2. 

4. Pass alpha, beta to left. 
Pass alpha, beta, delta to 
left in final iterations. 

5. Store updated A. r. 

Figure 17.    Dataflow and computation that occurs while applying the Fast Givens 
Rotations to input A. This example shows the first algorithm iteration (data flows from the I/O 
tiles), a, ß, and Ö values flow from the east Cache tiles. Updated .1 or M values, and 
computed R or Q values are stored in south Cache tiles. In subsequent iterations, data f. I or 
M ) would flow from north or south Cache tiles. 

Computation tiles from eastern Cache tiles. The rotations are applied to A, and the updated values 
are passed along for storage in the northern or southern Cache tiles. During iteration / of the /lh 
overall update (refer to the pseudocode in Figure 13), the rotations are applied to A(n - 1 : — 1 : 
2/. 1/ : ly+3). The sub-matrix A(n - 1 : -1 : 2/. 1/ : lj+ 1) is streamed through column I of the 
chip, while A(n — 1 : —1 : 2i,4j + 2 : \j + 3) is streamed through column 2. Each column of the 
chip streams its two columns in an interleaved fashion. Streaming two columns at once per column 
of tiles on the chip is a product of unrolling the second loop o\' the QR. eliminating processor data 
dependency stalls throughout computation for improved efficiency. In the case that the remaining 
number of columns is not divisible by 4, the columns are streamed through the Computation tiles 
one at a time. During the final iterations of the application during iteration j of overall iteration i, 
for columns A(n — 1 : — 1 : 2/. [j : \j + 3). 6 values are applied to the final updated .1 values, 
computing R(2i : 2/ + 1.2/ : 2j + 1). which is then streamed to the northern or southern Cache 
tiles. Therefore, at the end of iteration i (after the QR has looped through j = i : n). the 2/th and 
2i + lth rows of U have been computed. 
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Completing Q Computation for Tall-Thin Input Matrices. As explained in the previous 
paragraphs, as A and M are updated by applying Fast Givens rotations, values o[' (} and R are 
computed at the end of each iteration by computing and applying 5 values (diagonal elements o\' 
the matrix /) '•''-') to the updated M and A values respectively. Recall that the resulting matrices 
are computed as Q = MD 1/2. and R = D ~1/2A, where M and A have been updated via Fast 
Givens rotations |5|. However, for non-square input matrices, the outer loop shown in Figure 13 
only loops to n. leaving m—n values of 5 uncomputed that still need to be applied to M to compute 
the final m - n columns of Q. Figure 18 shows how this is accomplished. 

During iteration i o\' the final updates to Q. the values D(i. i) and D(i + l,i + 1) are passed 
from the northern or southern Cache tile in column I of the chip into the Compulation tiles in chip 
column I. The first Computation tile passes on D(i, i), then reads in D(i + 1,1+1). From this the 
two Computation tiles in chip column I compute 6 values and pass these on to column 2 of the chip. 
Chip column I then streams A/(0 : 2 : m, [i i + 1]). while column 2 streams A/(l : 2 : ///. [/ i + 1]). 
both interleaving the streaming columns. ,\/ values are then passed to the appropriate Computation 
tiles, multiplied by S, and the resulting Q values are output to the northern or southern Cache tiles. 

1 2 

^U 

I/O 

Cache/Storage D 
Computation 

Unused 

1. Pass d([i i+1]) values, then 
M(0:2:m-1,[i i+1]) down. 
Repeat for i=m-n:2:m-2. 

2 Pass M(1:2:m-1, 
for i=m-n:2:m-2. 

i+1]) down 

3. Pass d(i) down, compute delta 
from d(i+1).  Pass delta right. 
Pass M(0:2:m-1 ,i). compute 
Q(0:2:m-1,i+1) from M(0:2:m- 
1.1+1) and delta.  Pass down. 

4. Pass M(1:2:m-1,i) down. 
Compute Q(1:2:m-1.i+1) from 
M(1:2:m-1.i+1) and delta. 
Pass down. 

5. Compute delta from d(i). 
Pass delta right. Compute 
Q(0:2:m-1,i)from M(0:2:m-1 ,i) 
and delta.  Pass down.  Pass 
Q(0:2:m-1,i+1) down. 

6. Compute Q(1:2:m-1 ,i-1) from 
M(1:2:m-1,i+1) and delta. 
Pass down.  PassQ(1:2:m- 
1 ,i+1) down. 

7. Store Q. 

Figure 18.    Dataflow and computation lor computing the final m - n columns ofQ. 
Data in the figure flows from north to south, hut may flow from south to north, depending on 
the direction of dataflow for the last iteration of the algorithm. 
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3.2.4    Benchmark Results 

Performance results have been obtained for the QR benchmark running on the I x  I Raw 
simulator. 1 x  I Raw Handheld board, and finally on an 8x8 Raw simulator.  Results will be 
shown Tor these platforms in the following seetions. 

4x4 Simulator and Handheld Board Results 

Figure 19 shows results obtained from running the QR on square matrix inputs on the I x 1 
Raw cycle-accurate simulator and Handheld board. A performance drop-off is seen when in (for 
an in x in input matrix. I). is equal to 64. similar to cache effects seen in results for the G4 11()|. 
At in =64, we see that. 

and 

(i 1 rows * (i 1 columns * 8 Bytes per complex element = 32 kB (Size o\ matrix Q), 

(i 1 rows * G4 columns * 8 Bytes per complex element = 32 kB (Size of matrix R), 

Because the data is divided between two storage tiles, when in = (i I each storage tile holds 32kB 
of data. A performance drop-off is seen at this point because, for larger values o\' in. (,) and /i' no 
longer lit into the 32kB data cache contained in each of the Raw tiles. 

x 10
8      QR Throughput on 4x4 Raw Handheld Board 

3 b 

o 
^2.5 
3 
Q. 

i 2 

1.5 

l 

0 50       100      150      200      250      300      350      400      450 
M. for an MxM input matrix A 

Figure IV.    QR Decomposition results using the 4x4 Raw cycle-accurate simulator and 
4x4 Handheld board on square matrices. Differences between the simulator ami hoard 
results are discussed in detail in section 6. /. 

Differences seen between the results for the simulator and Handheld board are due to DRAM 
access penalties not being accurately represented in the simulator. These differences are discussed 
in detail in section 6.1. The reason that the differences between the simulator and board are so 

\ 
L                    x 

•| 

 Cycle-accurate Simulator 
Handheld Board 
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dramatic for the QR is due to the data access patterns of the implementation. When applying 
Fast Givens rotations to H throughout computation, non-contiguous data accesses arc made at the 
beginning of each iteration due to the fact that as columns are streamed from the Cache tile, only 
the bottom m — i values are used for iteration i. Also, switching between updates tor Q and /r" 
each iteration can cause many cache conflicts for large input matrix sizes. The increased number 
of cache-misses, forcing reads and writes to the external DRAM, amplify the differences seen 
between the simulator and board results due to the inaccurate DRAM access penalties found in the 
simulator. 

8x8 Simulator Results 

QR results obtained from the cycle-accurate simulator for an 8 x 8 Raw are shown in Figure 20. 
A clock speed o\' 100 MHz was used to generate the throughput results to allow for easy comparison 
to the 1 x 1 Raw results. Three memory configurations were used to generate the graphs in the 
figure. The lirst configuration assumes a similar DRAM setup as for the 1 x 1 Raw; the DRAM is 
located on the eastern side of the chip only. The second configuration uses DRAM located on all 
four sides o\' the chip. The third configuration also has a DRAM on all four sides o\' the chip, but 
the simulator was modified to have DRAM read and write penalties similar to those observed on 
the I x 1 Handheld board. The method for how these DRAM access penalties were obtained and 
set is described in section 6.1. 

x 10 QR Throughput on 8x8 Raw Simulator 

— 4-Sided Memory 
— 4-Sided Memory (modified DRAM penalties) 

1-Sided Memory 

100 200 300 400 
M, for an MxM input matrix A 

I' i^urc 20.    QR Decomposition results using the 8x8 Raw cycle-accurate simulator. 
Three configurations of the 8x8 simulator were used to generate the plots: A four-sided 
memory configuration, a one-sided memory configuration, and a four-sided memory 
configuration with "realistic" DRAM access penalties. 

Each of the plots in Figure 20 see performance drops at similar points in the graphs: when 
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rn = 110. At this point we see that, 

110 rows * 111) columns * 8 Bytes per complex element = 07 kB (Size of matrix Q), 

and 

110 rows * 110 columns * 8 Bytes per complex element = 07 kB (Size of matrix R). 

Because the two matrices are divided over 6 Cache tiles. 

(07 kB + 07 kB),/G Cache tiles = 32 kB per Cache tile. 

As the input data exceeds this size. Q and R begin to tall out of the data cache located on the 
Cache tiles, and a degradation or leveling off of performance is seen. The cache effects are more 
pronounced in the I-sided memory configuration because of memory dynamic network conflicts 
when multiple Cache tiles make DRAM requests. 

Scalability Analysis 

Figure 21 demonstrates the possible performance advantages of scaling the si/e o\' the Raw 
chip. Throughput graphs are taken from 1 x I Handheld hoard results and compared with 8x8 
simulator results for running the QR with square input matrices. The 8x8 simulator was run 
using four-sided memory with modified DRAM access penalties modeled after those found for 
the I x I board. On average, for points plotted in Figure 21. the 8 x 8 simulator outperforms 
the Handheld hoard by a factor of I I. This superlinear1 factor in performance is seen due to the 
increased memory accessibility found while locating a DRAM on all four sides of the Raw chip. 

The peak achievable throughput for the 1 x I Raw QR mapping, which uses 4 out of 16 tiles 
for computation, is 

25'/ * 1.6 Gflop/s (Peak for entire 1 x I chip) = . 1 Gflop/s. 

The peak achievable throughput using the 8x8 mapping, which uses 36 out of 64 tiles for com- 
putation, is 

569? * 6. 1 Glop/s (Peak for entire 8x8 chip) = 3.6 Gflop/s. 

The potential of using a higher relative number of Computation tiles for larger tiled-array chip sizes 
allows for more efficient use of the entire chip. Also, the fact that the efficiency of the algorithm 
on the Computation tiles remains consistent for larger chip sizes shows that linear performance 
improvements can be obtained by scaling the size of the Raw chip for streaming algorithms such 
as the QR decomposition. 

3.2.5    Further Optimizations 

Given the current board design, improvements could be made to the current implementation 
to alleviate cache effects seen for large input matrices. One possible solution is to separate the 
computations for Q and /?. Updates could be applied to .4 until R is fully computed, then applied 

'The 8x8 Ruw QR mapping uses 9 limes the number ol Computation liles as ihe 4x4 mapping. 
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Figure 21.    (JR Decomposition results using the 8x8 Row cycle-accurate simulator vs. 
the 4x4 Row Handheld hoard results. The 8x8 simulator results used a four-sided memory 
configuration, with modified DRAM access penalties modeling those observed on the 4x4 
Handheld hoard. 

to M to compute CJ. This would eliminate the cache conflicts due to switching hack and forth 
between the matrices during each iteration of the algorithm, but would force the storage of all of 
the Fast Givens rotation matrices for each update. There is a possibility that storing the rotations 
could introduce delays. 

More significant optimizations could he achieved if the Raw chip were used on a board de- 
signed for streaming applications. Surrounding the periphery of the chip with streaming memory 
devices would remove the necessity of the Cache tiles, allowing the entire chip to be used for 
computation. Even without streaming memory devices, cache effects could be reduced by placing 
DRAMs on more than one side of the chip. Evidence of this is seen in the 8x8 simulator results 
(Figure 20). where dramatic improvements are seen for a four-sided memor\ configuration over a 
one sided configuration. 

3.3    Singular Value Decomposition 

The singular value decomposition (SVD) is of increasing importance in signal processing. It 
is an advanced linear algebra operation that produces a basis for the row and column space o\' the 
matrix and an indication of the rank of the matrix. In adaptive signal processing, the matrix rank 
and the basis are useful for reducing the effects of interference | I I ]. 
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3.3.1 Algorithm Description 

Given an m x n complex matrix A, the singular value decomposition o\' \ is 

A = UZ\". (27) 

where U is a unitary matrix of size m x n, E is an /; x n diagonal matrix with all entries real and 
sorted in descending order, and \' is an n x // unitary matrix. 

The algorithm chosen to implement the SVD is the Stream Hestenes SVI) algorithm (or simply 
Stream SVD) proposed hy Strumpen. Hoffmann, and Agarwal 119]. The algorithm is based on the 
Hestenes-Jacobi method, applying Jacobi rotations to decompose the input matrix A [5]. What is 
unique about the Stream SVD method is that it computes and applies rotations in blocks. While 
this sacrifices speed of convergence, it allows for a parallel implementation that is highly suitable 
for an architecture such as Raw. 

3.3.2 Mapping to Raw 

The algorithm mapping specified in | 19], similar to the QR mapping, requires a storage de- 
vice accessible to each outer computation tile. The implementation described in this report was 
designed to run on the Raw Handheld board, which does not have such a storage device accessible 
at the periphery of the chip. To resolve this issue the outer tiles o\' Raw are used for I/O and data 
storage, and the inner block of tiles are used for computation. Figure 22 illustrates this for a 1 x 1 
Rau chip. 

The present Raw implementation of the SVD only computes £. A method for calculating I 
and I is described in the algorithm mapping document 119|. We do not expect the performance on 
the Raw processor to significantly change due to the calculations required lor computing I and I . 
The application of Jacobi transformations in the computation of/ can be performed in an efficient 
streaming manner similar to the computations performed to compute E. The divisions required in 
the computation of I . where 

B = U1  1. (28) 

(T,. = \\Bt\\, (29) 

and 

are insignificant compared to the overall work required to compute N^ and U. The only foresee- 
able negative affect due to the computation of U and I' is the potential increase o\' cache misses 
encountered in the computations due to the extra memory usage required to store the matrix / . 
The number of cache misses can be minimized by storing the Jacobi rotations and applying them 
separately in the updates to .1 and I': however, an increase in latency is expected. The magnitude 
of the increased latency will be data set size dependent. 

3.3.3 Implementation 

This section describes the specific implementation of the SVD for the Raw Handheld board. 
Details of this implementation are slightly different than the general mapping described in | \L)\. 
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Cache/Storage Cache/Storage 

Cache/Storage Computation Computation Cache/Storage 

Cache/Storage Computation Computation Cache/Storage 

Cache/Storage Cache/Storage UNUSED 

Figure 22.    I 'sage of a 4 x I Raw chip for performing the complex Stream Hestenes 
SVD. The inner 2x2 block of tiles I in red: tiles 5, 6, 9, and 10) are used for computation. 
The comer ides except for the southeastern aimer (in green: tiles I), 3, 12) are used for I/O. 
Tiles (in bine) 1. 2. 4. 7. 8, II. 13, and 14. are used as memory tiles that will stream data to 
and from their memory and the computation tiles. The 15th. or southeastern-most tile (grey) 
is tunned. 

Initialization and Output 

The SVD receives inputs from the north and outputs the resulting matrix and timing information 
out of the southwest-corner I/O tile. The organization of the inputs is handled by the PC A testbed 
and passed into Raw via the High Speed I/O system (see Appendix A. B). The testbed takes the 
input matrix. A, and divides the rows of the matrix between the two I/O tiles. These rows are 
streamed into the I/O tiles in a snaked row distribution2. Along with reorganizing the input data. 
the testbed will append the matrix dimensions, in and n. to the start of the data that is streamed 
into the I/O tiles of the chip. During the untimed initialization phase o\' the algorithm, in and 
n are read in from the I/O tiles, and distributed to all the '"working" tiles (all tiles in Figure 22 
excluding those marked "UNUSED") on the chip. The working tiles receive in and // and allocate 
any necessary memory. After allocating memory, initialization is complete, a synchronization or 
hairier function is called, the current Raw cycle count is stored, and the SVD function is called. 
After completing the SVD. another synchronization or barrier function is called, and the final Raw 
cycle count is stored. The beginning and ending cycle counts are then output to the testbed along 
with the resulting matrix, S. 

rile I will receive rows 0. 3. 4. 7. K in. and tile 2 will receive tows 1. 2. ,s. 6 in. The input row indices 
can he computed h\ interleaving values [0:4:m| and 13:4:m| for tile I. and interleaving values | l:4:m] and |2:4:m| lor 
tile 2. 
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SVD Computation 

Figure 23 shows a pseudocode example for the Stream SVD computation on Raw.   The cal 
culation o\' row norms is performed on the I/O or Cache tiles, and the Jacobi calculation and 
applications are performed on the Computation tiles. Each of the tiles will perform computations 
on different row pairs in parallel due to the use of block transformations within the SVD algo- 
rithm 119|. The following sections discuss the details of the computations outlined in Figure 23. 

COMP_R   =   2 
do 

for   i=0:COMP_R:m 
j = i + l 
calculateRowNorms(i,j) 
computeJacobi(I,j) 
applyJacobi(i,j) 

# Size of the computation block of tiles. 
# Loop until convergence criteria are met 
# Loop over rows of A in blocks of 2. 

# Perform boundary operations for 
# rows l and j. 

for ib=i+COMP_R:COMP_R:m      # Loop over remaining rows after ro\ 
jb=ib+l 
calculateRowNorms(i,j,ib,jb) # Perform non-boui   y operations: 
computeJacobi(i,j,ib,jb)     # Compute and apply trans:     Lons in 
applyJacobi(i,j,ib,jb)       # parallel for rows i, j, ib,  jb. 

end 
end 

while(convergence criteria not met) 

calculateSi gma(] # Calculate Sigma from row norms of A. 

Figure 23.    High-level pseudocode of the Stream SVD implementation for Raw 
Calculation of the row norms is performed on the I/O or ('ache tiles, while the Jacobi 
transformation calculation and application is performed on the Computation tiles. 

Testing for Convergence. Within the SVD computation, a 5 value is calculated and used in 
each iteration to determine whether convergence to an orthogonal matrix has been achieved. This 
value is calculated by summing the norms of each row in the input matrix. A, and multiplying by 
the floating point precision e. Because the implementation is performed on Raw in a streaming 
manner. 8 cannot not be calculated before the SVD without streaming in the entire matrix before 
the computation begins. Therefore, it is assumed that the input matrix is not orthogonal (i.e. it will 
not meet convergence in the lirst block sweep of the algorithm), and 5 is computed throughout the 
first block sweep. As each row is first streamed into the chip the I/O tiles calculate the row norm 
as they stream the values into the Cache tiles. The row norms are summed, then passed on to each 
Computation tile at the end of the first block sweep, where 5 is computed. In subsequent block 
sweeps, the calculated 6 value will be used for checking the convergence. 
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Computing Jacobi Rotations. The first step of the SVD algorithm is to compute the row 
norms. S(i) and S(j). of rows i and j respectively, which will he used in the Jacobi rotation 
calculation. The row norm calculations are performed on the I/O tiles when rows i and j are first 
streamed onto the chip, and computed on the Cache tiles for subsequent iterations. As the data fol- 
low s i and j stream onto the chip, the value, r/,,, for rows i and j is computed as 

gij = A(i,:)*A(j,:)'. (31) 

fhe value, g, is compared with 6 where a value of \g\ greater than 5 means that convergence has 
not been met for the current block sweep. The value. f/,r is used with S(i) and S(j), the norm 
values for rows i and j, to calculate the Jacobi rotation values; 

[c,s]=jacobi(S{i),S{j),gij). (32) 

The Jacobi rotation values are calculated for a complex input as follows: 

2 * 9ij 

sign{w) 

+ \/l + w'2' 
(34) 

w 

<=    ,        1    ==, (35) 
y/l + t*conj(t) 

s = t* c. (36) 

Jacobi rotations are computed for only two rows of the input matrix when the data that must 
be rotated resides on a single side of the chip. This boundary case can be seen in Figure 24. This 
figure describes the data How and computation that occurs upon the start of the SVD algorithm. At 
the start, no data has been streamed into the chip, so it conceptually resides on only the northern 
side of the chip. In this case. Jacobi rotations will be computed for rows i = 0 and / = 1. After the 
application of the rotations to rows 0 and I, the updated rows will reside in the eastern Cache tiles 
(tiles 7 and 8 respectively). For all remaining updates using rows 0 and I. Jacobi rotations will be 
computed lor four row-pairs simultaneously because data may he streamed from north—»south and 
eastf-Kvest at the same time. Figure 25 shows how this is performed for computing Jacobi rotations 
lor the rows 0 and I with rows 2 and 3. During this step, rows 0 and I are streamed from the eastern 
Cache tiles to the west, while rows 3 and 2 (recall that data is input in a snaked row distribution). 
are streamed into the chip and flow north—>south. As the values cross on the Computation tiles. </ 
is computed lor each of the row pairs, then used to calculate the Jacobi rotations. 

Applying Jacobi Rotations. Alter the Jacobi rotations have been calculated for a given row 
pair, i and j. the rotations are applied to the rows. For a row index, k. in row i and j, the values are 
rotated as follows: 

temp = A(i,k), (37) 

4(/. jfc) = c * A(i, k) - conj(s) * A(j. k), (38) 

A(j,k) = s*temp + c* A{j,k). (3C>) 
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3. Pass data through. 
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Figure 24.    Data flow and computation that occurs while computing Jacobi rotations for 
a boundary case. 
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Pass at end of row. 

5. Compute Jacobi rotations from 
rows 0'" and 2 

6 Compute Jacobi rotations for rows 
0' and 3. 

7. Compute Jacobi rotations for rows 
1 ' and 2. 

8. Compute Jacobi rotations for rows 
1 ' and 3. 

Figure 25.    Data flow and computation that occurs while computing Jacobi rotations for 
a non-boundary case. Superscript values denote the number of times the row has been 
rotated. 
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As with the computation of the Jacobi transformations, rotations arc applied to only two rows al 
once in the boundary situation where the data to rotate resides on one side of the chip. The data 
flow for the boundary case is seen in Figure 26. The computation shown in this figure directlj 
follows the computation of the rotation values shown in Figure 24. In Figure 26. rows 0 and I arc 
streamed into the Computation tiles, and the Jacobi rotations are applied on tile 6. The updated 
values of rows 0 and I are then stored in the eastern Cache tiles (tiles 7 and I 1 respectively). For all 
remaining applications of Jacobi matrices using rows 0 and I, Jacobi rotations will be applied for 
four row-pairs simultaneously because data may be streamed from north—»south and eastf+west 
at the same time. An example of this type of rotation application is shown in Figure 27. In this 
figure, the Jacobi rotations calculated in the step shown in Figure 25 are applied to updated rows 
()(l) and I1'1, and rows 3 and 2, where superscript values denote the number o\' times the row has 
been rotated. Rows O1" and l(" are streamed west from tiles 7 and I I respectively, while rows 3 
and 2 are streamed south from tiles 2 and I respectively. Jacobi rotations are first applied to rows 
()''' and 2 on tile 6. The output values of 0^ are streamed to the west, and 2(1) are streamed south. 
To the west, on tile 5 row values ()(2) are rotated with row 3, outputting ()(i) to be stored in the 
western C ache tile 4. and row values 3(" streamed to the south. Concurrently, tile 10 processes 
row \allies l(l) with 2'", outputting 2{2] to be stored in the southern Cache tile 14. and row values 
I1'-'1 streamed to the west. Also, tile 9 rotates row values F2' and 3(,\ outputting l(i) to be stored 
in the western Cache tile S. and 3I2) to be stored in the southern Cache tile 13. 

SVT) Block Sweep. Figure 28 combines the computations shown in Figures 24. 25. 26. 
and 27. The figure also shows the data Hows for the remaining steps necessary to complete one 
block sweep o\' the Stream Hestcnes SVD algorithm for an input matrix containing 6 rows. The 
oM steps in the figure show the computation of Jacobi rotations. The even steps show the appli- 
cation o\' the rotations. The first four steps shown in the figure correspond to Figures 24. 26. 25. 
and 27 respectively. The fifth subdiagram shows the computation of Jacobi values for rows 0 ' 
and I(i) with rows 4 and 5. with the application of the Jacobi rotations illustrated in the sixth subdi- 
agram. The outputs, row values for 0(5' and l(;>). are stored in the eastern Cache tiles, and updated 
values tor rows 4iJ and 5|2) are streamed to the southern Cache tiles. At this point rows 0 and 
I have been rotated against all other rows in the input matrix and require no further rotations for 
this block sweep. After this point, another boundary condition is found in the seventh subdiagram 
as all remaining rows (2 through 5) are located in the southern Cache tiles. Subdiagram seven 
shows the computation of Jacobi rotations for the two rows 3|2) and 2(2). The application o\' the 
Jacobi rotations is shown in subdiagram eight where the updated values for rows 3(i) and 21" are 
streamed to the western C ache tiles. Subdiagrams nine and ten show the rotation of rows 3'" and 
2''ri with 4,2) and 5(2>, resulting in rows 4(4) and 5(" being stored in the northern Cache tiles, and 
the final values (for this block sweep) for rows 3 and 2 (3^ and 2(5') stored in the eastern Cache 
tiles. Finally the boundary condition is found for rows 4 and 5 in the remaining two subdiagrams. 
where the resulting rows, 4'5' and 5(r>), are stored in the eastern Cache tiles as well. 

Throughout the block sweep, on each Computation tile a convergence flag is kept and set to 
raise if any //,, value is greater than 5. At the end of the block sweep, the convergence Hags are all 
sent to tile 0. where a logical and is performed on the flags, and the resulting value is passed back 
to each tile. If the returned flag value is true, the resulting singular values are computed and sorted 
(this is discussed in the next section) then output to the PCA testbed. If the returning convergence 
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Figure 26.    Dam flow and computation that occurs while applying Jacobi rotations for a 
boundary case. 
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Figure 27.    Data flow and computation that occurs while applying Jacobi rotation for a 
non-boundary case. 
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Figure 2S.    Data flow for a single block sweep of the Stream Hestenes SVD on on input 
matrix containing 6 TOWS. Numbers within the subdiagrams represent the row number being 
read, processed, or stored. Superscript numbers denote the number of times the row has been 
rotated. This process is repeated until convergence criteria are met. 
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(lag is false, the block sweep process is repeated until convergence criteria arc met. 
The location of the rotated data at the end ot'a block sweep will be different than the location of 

the data at the start of the sweep. In Figure 28, the data is located north of the chip in the beginning 
of the sweep, and in the eastern Cache tiles at the end. Therefore data Hows and computations 
for subsequent block sweeps occur in different directions and locations. This is accomplished by 
changing each tile's conceptual notion of its location in the grid (virtually rotating the grid), requir- 
ing a complex coordination of the computation and directional routing of data. This coordination 
is also dependent upon data size. In Figure 28. if the input matrix. .1. contained >S rows (or anv 
number divisible by 4), the data would have been located in the western Cache tiles at the end o\' 
the block sweep instead of in the eastern tiles. 

Computing Y,. Once the convergence criteria has been met for the rotated matrix. V values 
are computed by taking the square root of the norm of each row in the matrix. These values are 
then sorted using a bubble sort algorithm 11 |. and output to the PCA testbed. 

3.3.4 Benchmark Results 

Figure 29 shows results obtained from running the SVD on square matrix inputs on the 1 x 1 
Raw cycle-accurate simulator and Handheld board. The performance graph levels off when in. for 
an in x m input matrix. A, is equal to approximately 90. This is similar to cache effects seen in 
results for the G4 110|. At in - 90, we see that. 

90 rows * 90 columns * 8 Bytes per complex element = 0 1 kB (Size o\' input matrix   1). 

Because the data is divided between two storage tiles, when in = 90 each storage tile holds 32kB 
of data. A performance drop-off is seen at this point because, for larger values ot in. the input 
matrix will no longer lit into the 32kB data cache contained in each of the Raw tiles. 

Results for the Raw cycle-accurate simulator are only provided lor data sets up to a 192 X L92 
input matrix due to excessive simulator time requirements for the SVD. However, it is expected (hat 
the results should level off similar to the cycle-accurate simulator results seen for the QR kernel 
benchmark (see Figure 19). Differences seen between the results for the simulator and Handheld 
board are due to DRAM access penalties not being accurately represented in the simulator. These 
differences are discussed in detail in section 6.1. 

3.3.5 Workload Considerations 

The Stream SVD document. | 19], defines the total number o\ multiply-and-add operations o\' 
the SVD for processing real data to he 

((•".// - 1) *m(m - l)/2) * //. (40) 

where it represents the number of iterations or block sweeps required for the algorithm to converge. 
Therefore, we define the workload, in Hop. for the complex implementation to be 

8* {('»I + 1) *m{m - L)/2) * it, (41) 

because there are 8 Hop required to perform each complex multiply-and-add operation. 
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Figure 29.    SVD results using the 4x4 Raw exile-accurate simulator and 4 x 4 
Handheld board an square matrices. Differences between the simulator and board results are 
discussed in detail in Section 6.1. 

Table 1 

Comparison of SVD Workloads. 
Stream Hestenes SVD 

Real Data 
Stream 1 lestenes SVD 

Complex Data 
Cioluh Kahan SVD 

Complex Data 
Matrix Size Iterations Workload (Mflop) Iterations Workload (Mflop) f   Workload (Mflop) 

IG x 16 7 0.14 16 1.29 0.26 
32 x 32 7 1.14 16 10.41 2.04 
64 x 64 8 10.45 15 78.38 16.20 

128 x 128 9 94.22 17 71 I.SS 129.12 
256 x 256 9 754.38 15 5029.17 103.10 
128 x 32 7 18.66 18 191.95 3.61 
128 x 64 9 47.40 18 379.22 20.40 

256 x 32 7 74.94 17 728.00 5.71 
256 x 64 8 169.21 16 1353.65 2S.7S 

256 x 128 8 336.32 17 2858.74 162.67 
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Experimentation has shown that using the Stream SVD algorithm to process complex single 
precision floating-point data requires a significantly higher number o\' iterations or block sweeps 
to converge relative to the number required for real single-precision floating-point data. Conse- 
quently, workloads for processing complex data using the Stream Hestenes algorithm are consul 
erably larger than using a more conventional algorithm such as the Golub-Kahan SVI). described 
in [5]. Table I compares the number of iterations required Tor convergence, and total workloads 
lor real vs. complex single-precision floating-point data run using the Stream SVD algorithm. A 
floating-point precision t = 1 ' was used for both real and complex simulations. Also shown in 
the table are total workloads required for the Golub-Kahan SVD algorithm for processing com- 
plex single-precision floating-point data. The workload equation used for the Golub-Kahan SVD 
algorithm is discussed in [ I I ]. 

3.4    Constant False Alarm Rate Detection 

3.4.1 Algorithm Description 

As described in the PCA Kernel Benchmark Report | I I |. the constant false-alarm rate (CFAR) 
detection algorithm finds targets in an environment of varying background noise. Assume a data 
cube whose dimensions are number of beams .Y,„„. number of range gates Y,.,,. and number o\~ 
dopplers A',/,,,,, for each cell in the data cube, a local noise estimate is computed from the 2.V,/„, 
range gates nearest to the cell ('(/. j. k) under test that are at least a certain number of guard cells 
G away from C(i,j, k). Formally, for each cell C(i. j. k), the value of the noise estimate /'(/.;. k) 
is calculated as 

G+A 

T(i,j,k) = —-      Y,     C(i.j + l.kV2+ C(i,j-l,k)\2. (42) 
/7Vc/or   /   G+l 

The range cells involved in calculating the noise estimate for a particular vector are shown in 
figure 30. For each cell C(i,j, k), the quantity \C(i,j, k) '-'// ('../• k) is calculated: this represents 
the normalized power in the cell under test. If this normalized power exceeds a threshold //. the 
cell is considered to contain a target. 

3.4.2 Implementation on Raw 

For the CFAR kernel, the defined data sets are larger than the buffer size available with the 
HSIO interface. Therefore, the Raw CFAR kernel has two variants, an HSIO variant and a USB 
variant. We describe each of these in this section. 

The Raw implementation of the CFAR using the High-Speed I/O (HSIO) interface splits a Raw 
chip oi' size 1 x 1 into four quadrants of size 2 x 2. Each of these quadrants consist o\' three t\ pes 
of tiles, one I/O tile, one forwarding tile, and two leaf tiles. The I/O tile is adjacent to an external 
I/O port and handles all the external I/O for the quadrant. The forwarding tile forwards data and 
results to and from the leaf tile that is not adjacent to the I/O tile. Of the two leaf tiles, one is 
adjacent to the I/O tile and one is adjacent to the forwarding tile. The I/O tile thus communicates 
solely with its adjacent leaf tile and forwarding tile, and the forwarding tile communicates solely 
with the forwarding tile adjacent to it. See Figure 31 for a diagram of this arrangement lor a 1 x 1 
chip. Note that only the static network is used for inter-tile communication. 
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Figure 30.    Sliding window in CFAR detection. The example shows the number of guard 
cells G = 1 (iiul the number of cells used in computing the estimate .V, jltr = 3. 
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Figure 31.    CFAR's use of tiles on the MIT Raw. Thick black lines delineate the 
quadrants on the chip. The arrows are drawn only on the upper-left quadrant and indicate the 
tilt \ which communicate. 
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This implementation takes the data cube and flattens it into a series of one-dimensional rows 
o\' size Nrg, where each row represent elements from the same beam and doppler. These rows are 
then divided among the four quadrants and streamed into the I/O ports. The I/O tile will stream 
one row to each tile in its quadrant. As data is streamed in, each tile looks lor targets. For ever) 
cell under test, a 32-bit word is returned. This word equals 0 it' there are no detections: otherwise, 
the weird encodes the beam (8 bits), doppler (8 hits), and range gate (16 bits) in which the target 
was found. Because of this encoding, the data cube can have at most 256 beams. 256 dopplers and 
65536 range gates. Note that this can be easily extended by sending the beam, doppler. and range 
gate as separate numbers: however, current encoding is sufficient for data sets of interest. These 
detection reports are sent off-chip by the I/O tile, either directly or through the forwarding tile. 

The USB version differs in that only the left half of the chip is used. Since the right half has no 
tiles adjacent to external I/O. those tiles are not used, and the data that would have been passed to 
them is reallocated to the tiles o\\ the left half of the chip. 

As shown in the PCA Kernel Benchmark Report | I I ]. an efficient implementation of the CFAR 
algorithm can make use of the redundancy in the computation of / : 

-/'(,../ + 1,k) = T(i,j, k)   +   -J_(|C(t, j + 1 + a + Ncfar: / I 
lJScjaT 

+   \C{i,j-G,k)\2 

\C(i,j-G-Ncfar,k)\2 

-    C{i,j + G + l,k)\2). 

By using this recursive relationship, the value of T for all Nrg range gates can he calculated in 
0(Nrg) time. The Raw implementation takes advantage of this by maintaining two butters. One 
buffer caches squared values ('(/. ./• k)2 and is of size Nrg words. The either stores the squared sum 
of a one-sided window and is of size A,„ + X, faT words. As values are streamed in for a particular 
row. these arrays are updated with the necessarj values, and T(i,j,k) is calculated accordingly 
using the two arrays. 

3.4.3    Benchmark Results 

Figure 32 shows the parameters and the results of running CFAR on a large range v\' data 
set sizes. In Figure 32. timing is performed during the entire CFAR algorithm, including when 
data is streamed in and out. The CFAR algorithm in its current state is able to achieve at most 
approximately 2.5 operations per cycle for the entire chip. At around 4220 range gates ( 1220 
elements x2 buffers x4 bytes/element % 32 kB), the two buffers used by (he CFAR begin to exceed 
the Raw s data cache. These buffers are read approximately sequentially, so a drop-off at this point 
is expected. The performance continues to steadily decline until it reaches approximately 1.77 
operations per cycle. There is some fluctuation as the number o( range gates increase. However, 
the fluctuation is relatively small. 

The results in Figure 32 were obtained using the HSIO interface. To obtain results on (he data 
sets defined in the kernel benchmark report, we had to use a mixture of HSIO and USB. Data 
sets 2. 3. and 4 for CFAR consume 82. 22. and 9 MByte of space, respectively. HSIO has a 
maximum buffer of 8 MByte for sending data, which is only large enough to accommodate (!FAR 
data set I.   By using a special "high-speed input-only" version of the HSIO interlace, we were 
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Figure 32.    Performance of CFAR on the MIT Raw. G = ;5. N,)in = 8, Nc;aT 

Ndop     Hi. 20 < ATr9 < 8114. and n = 200. 

able to accommodate data sets I and 4. Data sets 2 and 3 had to bo benchmarked using the USB 
interface. As the USB interlace lias a relatively high latency, all o( the I/O time lor these data sets 
was subtracted out. making them appear faster than the other data sets. 

3.4.4    Other Optimizations 

There are a few significant optimizations that can be made to the CFAR. One involves cutting 
the size of the C(i,j, k)2 array. We observe that the algorithm accesses a squared element only live 
times, when it is respectively added to the rightmost window, subtracted as part of the rightmost 
guard cells, compared as a cell-under-test, added as a part of the leftmost window, and subtracted 
as the leftmost window shifts. Cells that are subtracted as the leftmost window shifts are never 
accessed again and need not be stored. Thus, instead o\' having a buffer oi size Nrg, a lot o\ 
memory could be saved by using a rotating buffer of size 2 x (Ncfar + C) + 1, which is typically 
far smaller than Nrg. As A,/„, and G are typically very small numbers, such a buffer would easily 
lit in cache. This would allow the CFAR to avoid the drop-off shown in Figure 32. 

The other major optimization is that the partial window sum buffer is also not necessary. Using 
the partial sums saves on the number of operations that must be done; the sum of any given window 
is only done once when it is calculated as the right window, whereas normally it would be implicitly 
calculated both when it is the left and right window. However, the amount o\' memory that is 
required to maintain this buffer makes it relatively expensive, especially when A',,, gets large. 
Thus, using a single value to maintain the current T(i,j, k) could improve performance. 
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4.   Communication Benchmark: Corner Turn 

4.1    Algorithm Description 

Mathematically, a corner turn or transpose of a matrix can be expressed as 

where A is a matrix of size m x n and B is a matrix of size n x /;;. This operation involves copying 
elements o\' .1 to B in the following way: 

bj.i = «i.j where i = 1,2,... , TO, j = 1, 2 //. 

Thus, the simplest algorithm for implementing the corner turn is to loop over all the elements 
across the rows and columns as follows: 

for    (i   =   0;    i   <   m;    i++) 
for    (j   =   0;    j   <   n;    j++) 

B [ j ] [ i ]    =   A [ i ] [ j ] ; 

In practice, this simple algorithm will lead to poor performance owing to poor cache utilization. It 
is more efficient to divide the matrix into hlocks and transpose each block individually. The block 
si/e depends on the characteristics of the processor, including the cache size. 

4.2    Implementation on Raw 

In general, a separate corner turn stage should be regarded as something to avoid in program 
ming Raw.   If the corner turn is (as is usually the case) occurring between two computational 
steps, better efficiency can be obtained by overlapping the movement of data with computation at 
a line-grained level. However, the corner turn is an interesting benchmark because it shows the 
performance of the processor in a pure communication operation. 

Our approach to the corner turn on Raw is to have each tile be responsible for the transposition 
o\ a set o\' individual blocks. We used as a starting point for the benchmark the C code for a single- 
processor corner turn developed by Rodric Rabbah of MIT and Jinwoo Suh of USC7ISI East as 
part of the VersaBench suite (for more information on VersaBench see Rabbah et <//. 116|). In their 
code, a block size of 64 x 64 is used. This allows both the input and the output data associated 
with a given block to be stored in the processor's 32 kByte cache, because 

((i 1 x (i I) elements x (1 bytes per element ) x 2 (input and output) = 32 kByte. 

Because data movement is the only type of operation involved in the corner turn, the actual 
input data is irrelevant. Therefore, in contrast to our other benchmarks on Raw. our implementation 
o\' the corner turn does not actually use a matrix streamed in from off the board. Instead it takes 
the size of a matrix as an input. Each tile then allocates space for the blocks of the input and output 
matrices for which it is responsible, and generates an input matrix of the appropriate size which 
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it stures in memory. During the timed part of the benchmark, each tile copies and transposes the 
blocks assigned to it. 

For this implementation we access the data purely through the memory network, that is. by 
reading and writing. We are also using the cache to buffer each block as it is transposed. This 
implementation is less efficient than an implementation that uses Raw's static network. However, 
it allows easy scaling of the matrix and the number of tiles involved. The corner turn code is 
written to allow I tile, 4 tiles, or 16 tiles of Raw to be used in the benchmark. In the case of one 
tile or 4 tiles, the corner turn is performed on the tiles on the cast side o\' Raw, closest to memory. 

4.3    Benchmark Results 

We began by testing the corner turn for square matrices on a single Raw tile. The achieved 
throughput is shown in Figure 33. The achieved throughput peaks between 35 and 40 Mbyte/s. but 
notice that it drops severely for data sizes that are multiples o\' 256 elements. This performance 
drop turns out to be dependent on the stride of the source matrix. The corner turn code shown 
here reads the blocks of the source matrix by columns, and the matrix is stored in row-major order. 
When the distance between items in the same column is a multiple o\' 1024 bytes (=250 elements 
x 4 bytes per element), the performance drops by more than a factor oi' 3. 

To understand the cause of the performance drop, we must understand that each Raw tile pos 
sesses a two-way set-associative cache. Fach set consists of 2" = 512 lines o\ 2 ' 32 bytes per 
line. When two addresses differ by some multiple of 2" ' ll = 16384 . they are mapped to the 
same two lines in the cache. If we read 64 elements that are 1024 bytes apart, then there will be 
four lines that map into the same two lines in the cache. B\ the end of the first column read, the 
first two lines will have been evicted to make room for the second two lines. Unfortunately, when 
we read the second column, the same four lines will successively knock each other out of cache 
again. This competition for the scarce resource of cache lines only increases as the stride grows. 
We can improve the algorithm by shrinking the row block size when the stride is a multiple of 250. 
To be precise, we shrink the original block size of 64 by the source-stride divided by 128. In the 
case where the source stride is 256. for example, this results in a block size of M rows. 

The results of the improved algorithm running on all 16 tiles of Raw are seen in Figure 34. The 
bandwidth increases by nearly a factor of 10 when compared to the single tile results. A factor o\' 
four comes from the fact that Raw has four "pipes" to memory, one for each row. The remaining 
increase in performance we attribute to the presence o\' multiple tiles in each row. each making 
memory requests, keeping the memory system maximally busy. 

There are clearly still performance drops for matrix sizes that are multiples o\' 1024. that is. 
when the stride associated with each tile is a multiple of 256. These decreases come from the fact 
that decreasing the block si/.e does increase the memory traffic. However, the performance drops 
are clearly not as severe as in Figure 33. 

Similar decreases in performance can also be seen in our results on the PowerPC Ci4 | l()|. and 
the cause there was also the cache mapping policy. In fact the drops were in general less severe 
because the associativity (the number of lines into which any one line may be mapped) o\ the Ci4's 
data cache is larger, but the cause and effect are the same. 

We timed the two baseline data sets (corner turn of a (i 1 x 5120 matrix and a 768 x 5120 
matrix) on all 16 tiles of the Raw chip.  In these cases we map 5120/16 = 320 columns to each 
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Corner turn throughput for square matrices on one Raw tile 
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Figure 33.    Corner turn results for square matrices on a single tile of Raw 

Corner turn throughput for square matrices on 16 Raw tiles 
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Figure 34.    Comer turn results for square matrices on 16 tiles of Raw. 
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Corner Turn Throughput Comparison 
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Figure 35.    Comer turn throughput for the G4, Xeon, and Raw board. 

tile. Those are treated as 5 column-blocks of size 64 columns in eaeh block. The results are show n 
and compared to similar results on the G4 and Xeon in Figure 35. Even though we are using 
the dynamic network for the corner turn on Raw, the 100 MH/ Raw is capable o\' performing a 
corner turn at the same rate as the 500 MHz G4. The 2.8 GHz Xeon is only 279? faster in the 
small case (set I ) and 22'< faster in the large case (set 2). This performance is remarkable when 
it is considered that the G4 and Xeon code was hand-optimized to use SIMD vector instructions 
(see | l(). pp. 2I-23|). Furthermore, we note that a static network corner turn in (he Raw simulator 
has been demonstrated to have much better performance than the code presented here (see Section 
4.4). The performance oi Raw on this benchmark can undoubtedly be attributed to the emphasis 
on providing network bandwidth in the Raw design. 

4.4    Raw Static Network Implementation 

Previous work on Raw includes the timing of a last corner turn of a 102 1 x 102 I matrix using 
the Raw chip's static network |2I | and assuming DRAM connected to all sixteen ports of the chip. 
It was not used for this benchmark primarily because its assumptions are not compatible with the 
existing board, which only has DRAM connected to four ports on the east side o\' the chip. The 
implementation of this benchmark also has the disadvantage of being harder to scale to different 
matrix sizes and numbers of tiles. However, it does demonstrate the potential advantage of using 
the static network and of a different board design. 

For the 1021 x 1021 case, the static network implementation completes in approximately 
142.000 cycles, while the memory network implementation takes approximately 2.7IO.OOO cy- 
cles on the board (about 20 times as long) and 1.770.000 cycles on the simulator (about 12 times 
as long). If we presume that placing DRAM on all four sides o\' the chip speeds up the benchmark 
b\ approximately a factor of four, then this benchmark shows the performance of the static net w oik 
to be about a factor of 3 better than the performance of the dynamic network. 
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5.   Information and Knowledge Processing Benchmarks 

The throe information and knowledge processing benchmarks defined for PCAs are pattern match- 
ing, database operations, and graph optimization via genetic algorithm. The results for these bench- 
marks are respectively defined in Sections 5.1, 5.2, and 5.3. 

5.1    Pattern Matching 

5.1.1 Algorithm Description 

The pattern matching kernel involves overlaying a test vector a against a library o\' patterns o\' 
length .V. and computing the mean square error. MSE. that quantifies the degree to which these 
two vectors match. Before the two profiles can be overlaid, they may need to be shifted in range 
to the left or right and the magnitude of the profiles needs to be scaled to match. The optimal shift 
and gain values can be found through brute force by computing the MSE for each combination 
of shift and gain values, then taking the minimum MSE. However, by noting that the MSE is a 
parabolic function of the shift and gain, we can lind the optimum shift and gain values at the global 
minimum by first finding the optimal shift, then finding the optimal gain value. 

5.1.2 Mapping 

The pattern match kernel can easily be mapped as a threaded kernel due to its underlying data 
parallelism. Since a MSE will be computed for each pattern template that matches against the test 
pattern, we can take advantage ofthat by replicating the pattern match kernel onto all tiles. Data 
will be distributed accordingly (see Figure 36 below). In detail, the Raw processor is divided into 
four quadrants or compute units. Each compute tile will retain a copy of the test pattern. The 
library patterns, which will be evenly distributed across the four compute units, are streamed into 
the Raw processor from the north and south ports of the four corner tiles. Each unit is responsible 
for computing the MSE for a quarter of the library patterns. After a tile has finished processing its 
share, (he tiles local minimum MSE will be sent to its corresponding corner tile. The corner tile 
will then determine the local MSE for the quadrant and send it to tile 0 to rind the global minimum. 
The processing is concluded by sending the index of the closest match out from the west port o\' 
tile 0. 

5.1.3 Implementation 

The pattern match kernel is divided into two stages: range shifting of the test pattern and range 
and magnitude shifting of the library patterns. Part of the code was parallelized to utilize the 
four-stage FPU pipeline. In addition, after acknowledging the base 10 power and the logarithmic 
functions are the bottleneck of the kernel, we have implemented a floating point version of the two 
functions by unrolling their corresponding Maclaurin series [23], 

5.1.4 Results 

figures 37 and 38 show the throughputs and efficiencies in Mfiop/s and percent, respectively, 
obtained for this kernel by varying the pattern length on the 4x4 tile Raw board and the 8x8 tile 
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Figure 36.    The pattern match kernel mapping. The mapping for one quadrant is shown 

in detail. The mapping for euch of the other quadrants is similar. 

simulator. The cycle count is averaged over two trials. The averaged throughputs are 322 Mllop/s 
and 1240 Mllop/s for the board and simulator results, respectively. When running in serial mode, 
memory usage tor this kernel is relatively large due to the fact that we have to store all the librarj 
patterns on one processor. However, when the kernel is distributed across multiple tiles, the amount 
of memory usage is kept well below the cache boundary. The reason for this effect was that each 
library pattern was streamed into a tile and discarded once it has finished processing. Essentially, 
only one library pattern is kept in the cache of a tile at any given time. Thus, the amount of memor) 
required for the kernel is solely dependent of the length of the patterns, and is independent ^\ the 
number oi' patterns being matched. The length for which the data will spill over the cache is: 

32 kByte/( 1 byte/pixel)/-! = 2K pixels (43) 

Pattern lengths larger than 2K were not benchmarked. For pattern sizes larger than 2K. nu- 
merical errors make single-precision implementation of the kernel impractical. Nonetheless, the 
benchmarked data si/es still do not exhibit behavior consistent with exceeding the size of the cache. 

Since data are always available in the cache, the stability of the kernel is expected to be rel- 
atively high, and the performance shown in Figures 37 and 38 clearly illustrate this effect. Also 
supporting this fact is the 3.8x' speedup in throughput for quadrupling the number o\' tiles. The 

'Computed by dividing the mean throughput of the 8x8 simulator results by the mean throughput of the Raw 
board results. 
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Pattern Match Throughput, 512 Library Patterns 
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Figure 37.    Pattern match throughput on Haw with 512 library patten's. 
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Figure 38.    Pattern match efficiency on Ran M ith 512 library patterns. 
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speedup is a little below linear, probably due to the fact that the patterns have to travel longer to 
get to the inner tiles. Overall, the pattern match is a very stable kernel. 

5.2    Database Operations 

5.2.1 Algorithm Description 

The Database kernel benchmark measures the performance of database operations in the con- 
text of a tracking application that stores track information in a database I I | During a discrete 
time interval, or cycle, the tracker application receives target reports from a radar and searches 
the database for all associated track records. The tracker application may also direct the database 
to insert new tracks based on target reports that are not associated with any current tracks, and to 
delete specific tracks. 

The database interface therefore receives a stream of instructions from the tracker application in 
the form of search, insert, and delete operations. Each of these operations are performed on track 
record indexing structures: the benchmark does not actually alter the contents o( an) particular 
track record, nor does it maintain the data associated with the records. Within the database, the 
following values are stored in each track record index structure: p. a track record pointer value 
used by the tracker application to locate the track record data: and x and //. coordinate values for 
the target within an area or grid. The output from the benchmark is a set o\' record identifiers, or 
track record pointer values, returned from search operations. 

The Database Operations are formatted in the following manner: 

SCOTCH    -Inn,,  .linn.:-  Until,   Uiitn.i- 

attempts to locate all track records within a specified range of a particular (./•. //) coordinate pair: 

inst it .;• //. 

creates a new track record index structure within the database lor a target detected at location 
(x, //): and finally. 

ill l< ti   x i/. 

deletes a specific track record from within the database. 

5.2.2 Mapping to Raw 

Figure 39 illustrates how the \ x 1 Raw chip is used to perform Database kernel benchmark 
operations. The 16 tiles of the Raw chip are divided into a Master tile, an fnsert tile, and 14 
Search tiles. The Master tile is responsible for performing off-chip I/O. distributing search, insert, 
and delete instructions appropriately, and collecting track record pointers returned from search 
operations. The Insert tile maintains a list of available record pointer values, adding and removing 
pointer values for insert and delete operations respectively. Finally. Search tiles contain binary 
trees that hold track record index values. These tiles are responsible for searching the binary trees 
during search operations and returning valid record pointer values for records matching the search 
criteria. 
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Figure 39.    Usage of a 4x4 Raw chip for performing Database Operations. The Master 
tile {tile 0, in green) distributes instructions and collects track record pointer values returned 
front searches. The Insert tile I tile I. in red) maintains record pointer values. Finally, the 
Search tiles (tiles 2-15. in blue) maintain binary trees that contain indexing structures for 
track records. 

5.2.3    Implementation 

The following sections give a description of the implementation of the Database kernel bench- 
mark for the Raw processor. All communications described in the following sections arc performed 
using Raw's static network. 

Initialization and Timing 

The Database benchmark performs all I/O via the northern port of the Master tile (see Ap- 
pendix A. B). Data set parameter information II is passed into the Master tile and distributed 
to the remaining 15 tiles. All tiles receive the data set parameters and allocate any necessary data 
structures. 

A Matlab instruction generator creates insert instructions to initially populate the database. 
The Matlab instruction generator also generates the search, insert, and delete instructions for the 
benchmark. Initialization and benchmark instructions are input into Raw and executed in the same 
manner: the methods used are described in the following sections. The Master tile begins timing 
once the initially placed targets, set P, are inserted into the database. The Master tile stops execu 
lion after a set number of instructions are performed for a predefined number of cycles. The Mastei 
calculates the time taken to perform the benchmark, and outputs the time to the PCA Testbed. 

Search Tile Data Structures. Each Search tile holds a binary tree 111 that is used to store 
track record information. Record information is stored in the binary trees using the target's .r 
coordinate as the key held. 
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Search Database Operation 

Figure 40 shows the data flow patterns for performing search operations on Raw. The search 
parameters. ./„,,„. .r„,„.,. //,„,„. and //,„„, are distributed from the Master, west—»east across the top 
row. then north—»south down columns of the chip. Each Search tile receives the search criteria and 
parses its binary tree for any track record matching the criteria. All track record pointer values, p, 
for tracks that match the criteria are returned to the Master north—»south, then east >\\est. Search 
criteria is met for a track record with (x, y) coordinate values if 
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Figure 40.    Data flows for performing the search Database Operation Subdiagram (A) 
shows the distribution of the search values. Subdiagram (li) shows the data for the return 
information sent from the Search tiles. Each Search tile will return each track record pointer 
value for records that match the search criteria. 

Insert Database Operation 

Upon receipt of an insert instruction, the Insert tile reads the next available track record pointer 
value from its memory. This value, p, along with the (././/) coordinate values supplied with the 
insert instruction are sent to a Search tile that inserts the values into its binary tree. Track record 
index values are inserted into Search tdes in a round-robin fashion over tiles I5:-1:2. Figure II 
shows example data Hows for four insert operation scenarios inserting into tiles 15, 9, 6, and 3, 
shown in subdiagrams (A), (B). (C), and (D) respectively. In general, for tiles 2 and 3, found in 
row 0, the values p. x, and //. are passed east to the chosen Search tile. For tiles 4 through 15, 
or tiles not found in row 0, the value p is passed from the Insert tile west to the Master tile, then 
values p. x, and y are communicated south and then east to the appropriate Search tile. 

Performing the insert operations in this manner allows multiple insert operations to be per- 
formed in parallel. Each insert operation requires the allocation of memory as a new node is added 
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Figure 41.    Example dataflows arc shown for performing insert Database Operations. 
Track record index values arc inserted into Search tiles in a round-robin fashion over tiles 
15:-1:2. Examples are shown in subdiagrams (A), (B), i('), and (D)for inserting record index 
data into search trees on tiles 15. 9, 6. and 3 respectively. 

) the binary tree. As one Search tile is performing the allocation, the Master tile will assign insert 
Iterations to the remaining Search tiles to he performed in parallel. 

Delete Database Operation 

Figure 42 shows the data flow required to perform a delete operation. Subdiagram (A) shows 
the distribution of the instruction and (./'.y) coordinate values for the corresponding track record to 
he deleted. Subdiagram (B) shows the resulting communication as the track record pointer value, 
p. is returned to the Insert tile to be reinserted into the list of available pointers. When the Search 
tiles receive the (././/) coordinate values, each tile searches its binary tree for the corresponding 
record. If a Search tile locates the record in its binary tree, the pointer value, p. is returned to 
the Insert tile. Otherwise, the tile sends an invalid pointer value that is ignored by the Insert tile. 
Invalid values are sent to maintain the structured communication model that is required from using 
the static network for communication. 
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Figure 42.    Data flow for performing the delete Database Operation. Subdiagram t.\) 
shows the distribution of the track record values for the record to delete. Subdiagram ilil 
shows the data flow for the return information sent from the Search tiles. The deleted record's 
pointer value is returned to the Insert tile. 

5.2.4    Benchmark Results 

Figures 43 and 44 show the performance results for the Database Operations benchmark run on 
the 1 x 1 Raw Handheld hoard. The results were generated by running 100 cycles, performing 200 
search operations, 150 insert operations, and 150 delete operations per cycle, while varying the 
size of the database. For these data set parameters. Figure 43 shows the throughput in transactions 
per second, where a transaction is defined as a search, insert, or delete operation. Figure 44 shows 
the latencies measured for each test. 

In Figure 44 an increase in the slope of the latency curve is seen somewhere between database 
si/es of I0k-20k track records. To examine the causes of the increased latency, we measure the 
performance of running only search operations. This is done because the search operation is the 
dominate operation in terms of workload and communication for the database si/es plotted in 
Figures 43 and 44. Results for running 100 cycles, performing 400 search operations per cycle is 
plotted in Figure 45. A more dramatic increase in the slope o\' the latency curve is shown in this 
figure. For a database size of 16k records, we see that, 

Kik records * 28 Bytes per record 

1 I Search tiles 
= 32 kB (Size o\' binary tree on each Search tile). 

As the size of the database approaches 16k records, latencies increase as the size of the binary tree 
held on each Search tile grows larger than the si/e of the tile's cache. The red and black dashed 
lines in Figure 45 respectively show where search operations are performed on target records in 
the cache of each tile, and where search operations begin to access data outside of the cache on 
each tile. 
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Figure 43.    Throughput results arc plotted jar the Database Operations benchmark run 
on the 4 x 4 Raw Handheld hoard. For each test, 100 cycles were run, performing 2(H) 
searches. 150 inserts, and 150 deletes per cycle on a grid size of16 x 16 with a 4 x  I search 
area. See / / / / for data set parameter details. 
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Figure 44.     Latency results are plotted for the Datahase Operations benchmark run on 
the 4x4 Raw Handheld hoard. See Figure 43 for data set information. 
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Figure 45.    Database latencies are plotted from using the 4x4 Raw Handheld board for 
performing search operations only. Latency is plotted in solid green. Red and black dashed 
lines respectively show where search operations are performed on target records in the cache 
of each tile, and where search operations begin to access data outside of the cache on each 
tile. For each test, 100 cycles were run. performing 400 search operations per cycle on a grid 
size of16 x 16 with a 4 x 4 search area. See [11J for data set parameter details. 

5.2.5    Further Optimizations 

The Datahase kernel benchmark implementation for Raw could benefit in performance from 
improvement in the mapping and design of the benchmark, as well as further optimization of the 
current design. One such mapping change would he to comhine the functionalities of the Master 
and Insert tiles, and perform these responsibilities on a single tile. The current Insert tile could 
be used as a Search tile providing increased distribution of the target records and reduction of the 
search operation workload per Search tile. 

It may be possible to optimize the insert operation by using the dynamic network for commu- 
nication2. While the current implementation does allow for insert operations to he performed in 
parallel, there are times where tiles that are in the process of inserting a track record block the 
transmission of insert commands to other Search tiles. Using the static network requires the ex 
plicit programming and control of each switch processor, requiring each Search tile to he finished 
with its current instruction before proceeding to and passing along the next instruction to its neigh- 
bor. The dynamic network could be used to bypass working tiles, better utilizing each Search tile 
during a block of insert operations. 

The performance of the benchmark could also he improved by implementing a memory man- 
ager for each of the Search tiles, similar to what was implemented for the G4 implementation of 
the Database benchmark 11()|.  A memory manager could reserve a large pool of memory, dol- 

-Ai the time of this report we have not evaluated the performance of Raw using the dynamic network in such a 
context. 
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ing oui pieces upon allocation requests and reassuming responsibility for pieces deallocated In 
the benchmark. Managing memory in this manner would significantly improve the performance 
because each cycle performs insert and delete operations. For a large enough pool o\' managed 
memory, each matching insert and delete operation would remove the necessity of either a iiuf/nf 
or free system call that requires hundreds of cycles. 

Finally, the benchmark performance could also improve through the use o\' more sophisticated 
data structures. The binary trees used on the Search tiles could be replaced with red-black trees | I | 
as was used in the G4 implementation of the benchmark 110|. Using red-black trees would insure 
that the search tree is balanced, potentially reducing tree traversal latencies involved in search, 
insert, and delete operations. 

5.3    Graph Optimization via Genetic Algorithm 

5.3.1 Algorithm Description 

Genetic algorithms \2. 4. IS| have become a viable solution to strategically perform a global 
search by means of many local searches. The genetic algorithm used for this kernel benchmark 
is a fairly simple version |ll| that works by first randomly generating an initial population of 
chromosomes representing a set of possible solutions to an optimization problem. A matrix of 
scores is also created that determines how "good" a particular code is in a particular gene position 
within a chromosome. 

A typical genetic algorithm usually consists of two tasks: evaluation and selection. Dining 
evaluation, the fitness o\' a particular chromosome is determined. This score is used in the fol- 
lowing selection phase, in which the new generation is created by selecting chromosomes from 
the current generation. Typically, chromosomes are randomly selected with probability propor- 
tional to a chromosome's fitness score. Chromosomes are then potentially subject to mutation, in 
which individual gene values change to a randomly generated code, and crossover, where a pair o\ 
chromosomes exchanges genes with one another. 

A parallel version of the genetic algorithm [3] adds a migration stage between evaluation and 
selection. During migration, certain chromosomes residing locally on each tile are copied to neigh- 
boring tiles. 

5.3.2 Implementation Features 

In the Raw version of the genetic algorithm, each tile runs an independent instance o( the 
genetic algorithm with its own local pool of chromosomes. The only time that tiles actually coin 
municate is during the migration phase. The algorithm proceeds in five steps listed below. 

1. The chromosomes in the current generation are evaluated using the scoring matrix. The elite 
chromosome, or chromosome with the highest score, is noted, and the scores are stored for 
later use. 

2. Two copies of the elite chromosome are maintained. One copy is left untouched between 
generations, anil the other is subjected to mutation. 

3. The elite chromosome from a particular tile will emigrate to each of the tile's neighbors. 
Thus, each tile will receive between 2-4 chromosomes from its neighbors.  Note that tiles 
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with less neighbors (such as the edge tiles) will have less immigrants and thus will have 
more open spots during the selection phase. 

4. The remaining spots in the new generation are filled in by randomly selecting pairs of chro- 
mosomes from the old generation. The probability that a chromosome will be selected is 
equal to its fitness score divided by the total fitness o\' the entire population. Each gene in 
a selected chromosome is subjected to mutation with a given probability. These pairs are 
also potentially subjected to crossover, which involves randomly choosing a site along the 
length of the two chromosomes and exchanging all the genes of the two chromosomes past 
this point. Note that selection, mutation, and crossover are done simultaneously in order to 
minimize memory operations. 

5. If there remains a leftover spot, it is filled with another copy of the elite chromosome, which 
is subjected to mutation. This occurs when the local population size minus the number of 
neighboring tiles is odd and thus cannot be filled by pairs of selected chromosomes. 

The parameters of the kernel, including population size, probability of mutation/crossover, and 
fitness scoring, remain the same for any particular run of the kernel. 

The number o\' chromosomes locally on each tile is calculated as follows: 

local number of chromosomes = max < 6. 
global number of chromosomes 

total number of tiles 
(44) 

The global number of chromosomes is specified by the data set. and the total number of tiles is 
dependent on the Raw chip (16 in the present 1 x 4 Raw chip). The effect of the max function 
in equation (44) is to guarantee that each pool can at minimum hold the two elite chromosomes 
and up to four immigrant chromosomes. The typical net effect, however, is that the global pool is 
divided among all the tiles. 

Each tile allocates two pools with sizes equal to the product o\' the local number of chromo- 
somes and number of genes per chromosome; these pools hold the current and next generation 
of chromosomes. In addition, each tile also maintains a copy of the scoring matrix, which maps 
a particular code in a particular gene position to a score, and uses it to calculate the fitness of a 
particular chromosome. This matrix, along with all the other parameters, is propagated from tile 
0. which is responsible for all the external I/O. to all the other tiles. Finally, each tile maintains a 
scorecard which represents the actual scores of each chromosome in the current generation: llns is 
used during phase 4. 

After a specified number of generations, the tiles propagate their elite chromosome back to the 
northwest tile. This is done by performing a process similar to the one specified above, excepl 
maintaining only one copy of the elite chromosome in step 2 and not performing steps 4 and 3. 

The random number generator used in this implementation is the same version of the VSIPL 
random number generator 117| used in the G4 version of the kernel 11()|. 

5.3.3    Benchmark Results 

Timing is performed on each generation as well as the final propagation. The final propa- 
gation's time is amortized among all the generations, and the mean time over all generations is 
reported. 
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As in the G4 version of the kernel |I0|. the genetic algorithm relies on a random number 
generator to control the behavior of certain processes, such as crossover, selection, and mutation. 
The scoring process's memory accesses also depends on what a particular gene's value is. Thus the 
memory access pattern during one generation of the genetic algorithm is not completely sequential. 
However, after scoring has occurred and a particular pair of chromosomes are selected, the values 
are read and the crossovers performed in a pairwise sequential manner. Thai is. the accesses 
alternate between the two patterns, but each pattern is read sequentially. Also, the memory accesses 
to the new generation's pool are completely sequential. 

As a result, the effects of memory subsystem can be seen in the genetic algorithm's perfor- 
mance, as shown in Figure 46. Performance for the entire chip peaks at slightly over 500 Mflop/s, 
an efficiency of about 30%, until the the size of the two pools plus the scoring matrix and scorecard 
exceeds the 32 kByte level-1 cache boundary. When the genetic algorithm exceeds cache capac- 
ity, performance begins to drop. As the memory usage far exceeds cache, the genetic algorithm's 
performance asymptotically approaches about 178 Mflop/s. or about an I \ck efficiency. 

x10° Genetic Algorithm - Raw 

5 10 

Memory usage (bytes) x10 

15 

Figure 46.    Throughput of the genetic algorithm benchmark on the Mil' Raw. The 
number of genes/population size varies from 10 genes/6 chromosomes per tile (~10.25 
kBytes) to 120 genes/30 chromosomes per rile (~145.43 kBytes). The number of codes - 250, 
number of generations = 5000, P(mutation) = 0.05, and P(crossover) = 0.60. 
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5.3.4    Further Optimizations 

There are several optimizations that could have been done to achieve better performance on 
this kernel. One simple optimization involves not re-evaluating chromosomes in later generations 
whose score is already known by some tile. For example, the unmodified elite chromosome kept 
between generations is currently re-evaluated every generation. In addition, tiles migrating elite 
chromosomes could also send the score of the corresponding chromosomes, which increases net- 
work traffic by one value per chromosome but saves the destination tile from traversing through 
the genes o\' a chromosome and performing lookups into a score matrix. A further optimization 
could make use of prefetching on the new generation pool to minimize the number of writes that 
miss cache. This could mitigate the drops in performance at the cache boundaries. Similarly, it 
is possible to reduce memory accesses further by ordering the memory reads necessaiy during 
the random selection of chromosomes. This could be achieved by generating and sorting all the 
random numbers before performing the reads. 
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6.   Raw Kernel Benchmark Observations 

The previous chapters discuss detailed results for individual kernels. This chaptei contains general 
observations about Raw based on the observed results. We begin with a comparison of the Raw 
simulator to the Raw board in Section 6.1. Section 6.2 compares development effort on Raw to 
conventional processors. Section 6.3 summarizes throughput, stability, and throughput per unit 
power results for the baseline kernel data sets on Raw. and compares the Raw results to previous 
results for the G4 and Xeon. 

6.1    Hoard-Simulator Comparison 

Prior to delivery of the Raw board in April 2004. M1T/LL used the cycle accurate simulator 
for Raw as a means of development and testing o\' the kernel benchmarks, as well as to obtain 
initial performance estimates. However, experimentation has shown that the Raw board and the 
Raw simulator yield considerably different performance results. In this section, we discuss these 
differences and their causes. 

figure 47 shows performance plots for the QR decomposition kernel benchmark run on the 
Raw board and the Raw cycle-accurate simulator |7|. A performance drop-off is seen when \l 
(for an .U x .U input matrix A) is equal to 64, similar to the cache effects seen in results for the 
G4[10]. At ,\/ = (i I. we see that. 

(i I rows  i (i I columns * 8 Bytes per complex element = 32 kB (Size of matrix Q). 

and 

6 1 rows * 6 I columns * 8 Bytes per complex element = 'V2 kB (Size of matrix It). 

Because the data is divided between two storage tiles, when M = 6 I each storage tile holds 32kB 
of data. A performance drop-off is seen at this point because, for larger values o( M. Q and l\ will 
no longer fit into the 32kB data cache contained in each of the Raw tiles. 

Inferring from the cache effects seen in Figure 47 as well as an investigation into the Raw 
simulator source code, we hypothesize that the memory model used by the simulator does not ac- 
curately match that of the board, consequently producing the differences seen between the Raw 
Board and the cycle-accurate simulator due to off-chip DRAM access delays. One possible cause 
of the delays is that parameters used by the simulator do not match the specifications of the board 
(e.g. Raw clock speed. DRAM clock speed). Whatever the cause, the simulator uses inappropriate 
estimates o\' DRAM write and read penalties for cache misses. Experimentally adjusting the values 
dramFU adLatt ncy and dramWritt Latt ncy within the simulator code1 produced performance 
numbers close to those attained from using the Board. Comparisons are shown in Figure 48. 
For this plot, the values dramReadLatency and dramWriteLatency, which are usually set to 
the values 6 and I respectively, were each set to 16. These results suggest that a near-accurate 
estimate of the Raw Board's performance can be obtained by adding constant delays to DRAM 
access penalties within the simulator. It should be noted that the values chosen for the variables 

'The simulator is written in a language known as "bC": the actual file that was changed uas in the subdirectory 
btl/dev/dram.bc. 
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Figure 47.    QR Decomposition results using the Raw Board and the Raw cycle-accurate 
simulator. 
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Figure 48.    QR Decomposition results using the Raw Board, cycle-accurate simulator, 
and the cycle-accurate Simulator with modified DRAM read and write penalties. 
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dramRt adLatt ncy and dramWriU Latt ncy for Figure 48 were found in an experimental lash- 
ion. Other kernels with memory usage patterns different from the QR could expose other possible 
DRAM delays requiring different modifications to the simulator. Therefore, further knowledge 
and research into the simulator code and Board would be necessary to create a completely accurate 
simulation model. For this effort, the majority of benchmarking work was performed on the board, 
making a completely accurate model unnecessary. However, such a model could be a useful tool 
for examining current limitations in the board design, and for determining requirements for possi- 
ble future chips containing a larger number of tiles. Also, it may show the need for algorithms that 
use better data and computation blocking to minimize cache misses. 

6.2    Development Effort 

In this section, we make comparisons of the development effort required to achieve high perfor- 
mance on Raw versus the effort required on the PowerPC G4. Briefly, achieving performance on 
the (14 requires tuning the ende to the memory hierarchy and adding Altivec instructions. Achiev- 
ing performance on Raw requires specializing code for each tile and writing code to communicate 
among tiles. Tile communication code is assembly-language code and so is ver\ tedious to write. 

We quantify the amount of effort by comparing the lines of code required. This is in some sense 
an unfair comparison, as lines of code do not directly translate to development effort. However, il 
is the best metric we have in the absence of actual time-to-develop statistics. 

To begin with, we consider the implementation of the FIR filter on Raw. We have lour im- 
plementations available to compare. The first is straightforward, portable ANSI C code for the 
frequency-domain FIR filter, available as part of the HPFC Challenge benchmark suite |6|. This 
code is a radix-4 FFT-based implementation. We compare this code to the streaming frequency- 
domain implementation described in Section 3.1. We also compare with an optimized single-tile 
frequency-domain FIR filter bank developed by Jinwoo Suh of USC/1SI. This implementation is 
capable o\' performing up to 16 FIR filter operations simultaneously, one per tile. 

Table 2. 

Lines of code for four FIR filter implementations. 
Name Developer Language SLOC 
HPEC challenge benchmark 
Single-tile 
Stream Iff 

MIT/LL 
USC/ISI 
MIT/LL 

ANSIC 
C.AsscmbK 
C.Asscmbly.Network 

400 
1525 
3450 

We can see the large jump in code size required to implement the single-tile optimized version 
versus the straightforward C code version. However, adding the code to make a multi-tile version 
adds even more lines of code, more than doubling the code required for the single-tile version 
(which was already almost four times as large as the C version). 

As another data point, we consider the implementation of the corner turn kernel. The AltiVee 
implementation of this kernel was previously described [ l()|. The Raw static network implemen- 
tation referred to in Section 4.4 can serve as a point of comparison, since these perform the same 
operation. The G4 corner turn code including the AltiVee assembly language routines comprises 
about 260 lines of code. By comparison, the Raw static network version comprises 4750 lines of 

65 



code. Of these, about 4000 lines of code are assembly language code used to route the data. The 
Raw code is nearly a factor of 20 larger. This roughly corresponds to the fact that Raw can be 
considered to have a factor of 16 times as many instruction streams as the PowerPC. 

The AltiVec corner turn, though it imposes some limitations on data size, can be used with a 
range o\' matrix sizes. About 3000 lines of the Raw static code are actually generated by a Perl 
script and are matched to the specific number of tiles on Raw and the size of the matrix. Automatic 
generation of this code is clearly very desirable. 

Certainly, the ideal tools for tiled architectures arc not yet well-defined. It would be unrealistic 
to expect mature versions o\' such tools to emerge fully formed from an academic project like 
Raw. However, by pointing out the amount of effort required to achieve high performance on these 
architectures, we hope to motivate the expenditure of more time and effort on such tools. 

6.3    Baseline Results and Platform Comparison 

In this section, we summarize the performance of Raw on the PCA kernel benchmarks, and 
compare with the performance of the Xeon and the G4. The parameters o\' the three chips are 
summarized in Table 3. In particular, it is important to point out that the Xeon is implemented in 
newer technology than the other two chips. 

Table 3. 

Processor Parameters 
Parameter Raw (14 Xeon Units 
Clock speed 100 500 2800 MHz 
Peak throughput 1.6 4 11.2 Gflop/s 

On-chip level-1 cache 16 * 32 32 8 kbyte 
On-chip level-2 cache 512 kbyte 

Off-chip bandwidth 160 1 4.3 Gbyte/s 
Typical chip power 5 5.3 74 W 
Technolog} generation 0.18 0.18 0.13 micron 
Chip die si/.e 330 52 146 mm 
Transistors IIS 10.5 IDS million 

With one exception, the performance numbers we cite in this section are for the implementa- 
tions described in this report. The exception is the FIR filter, where we made use of an optimized 
single-tile implementation provided by Jinwoo Suh of USC/IS1 East. When multiple tillers are 
available to be distributed to each tile, this implementation gives good performance. 

The original kernel benchmark description | I I | gave several baseline parameter sets, based 
on real application parameters, for each of the kernel benchmarks. The throughput for the base- 
line data sets for each kernel is summarized in figure 49. Throughput for the corner turn kernel 
benchmark is given in Mbyte/s, while throughput for the database kernel benchmark is given in 
transactions per second. Throughput for all the other kernels is in floating-point operations per 
second. 

We compare the absolute performance of Raw to that of the 04 and Xcon in Figure 50. In 
that figure, we include both actual throughput measured on the Raw board at 100 MHz. and scaled 
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Figure 49.    Achieved throughput of kernels on defined data sets on the Raw hoard. 

performance numbers for an improved board.  For the improved hoard, we assume a 425 MH/ 
clock frequency (MIT's best estimate of the maximum frequency o\' the Rav\ chip) and linear 
scaling. The results are very impressive. The 100 MH/ Raw is competitive with the G4 despite a 
5x difference in clock frequency and a 2.5x difference in peak performance. The 425 MH/ Raw 
is competitive with the Xeon operating despite being from an earlier technology generation and 
operating at a much slower clock frequency. In addition. Raw's performance averages are more 
consistent across kernels than either of the conventional architectures. 

In Figure 51 we compare the performance per unit watt for the Raw. G4. and Xeon. As dis- 
cussed in the original kernel benchmark specification, we consider only the power of the processor 
and not the power associated with other components necessary to put together a system 11 I |. This 
is done because the number o\' type o\' such components vary with the system purpose and it is rea- 
sonable to assume that the components might be similar for any processor employed for a specific 
purpose. Performing the calculations using only the processor power exaggerates the importance 
of the processor but also highlights differences among architectures. 

Raw compares very well to the other architectures in Figure 51. despite the fact that it is an 
academic design that is not power-optimized. The Xeon does not perform well by this metric, as it 
is designed lor use in server environments rather than embedded systems. But Raw's performance 
is very close to that of the embedded G4 system, and on some kernels it outperforms the G4 in 
terms o\~ throughput per watt. 

Based on the throughput measurements, stability for each kernel can be calculated. The data 
set stability, that is. the stability over all data sets for a particular kernel, is shown in Figure 52 
for each kernel, for the Raw. G4. and Xeon. On a per-kernel basis. Raw's stability is similar to 
that of the other platforms. It shows better stability for the SVD and genetic algorithm, and worse 
stability for CFAR detection. 

Also shown in Figure 52 is the stability over all the floating-point kernels, that is. the minimum 
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Figure 52.    Achieved data set stability for kernels on the Raw board compared with the 
(14 and Xeon. 

achieved throughput for the floating-point kernels divided by the maximum achieved throughput 
for those same kernels (FIR. SVD. CFAR, pattern match, and genetic algorithm). Notice that 
this number is much lower for each of the platforms than the individual stability for each kernel. 
However, Raw has a higher stability over all the floating-point kernels than either the G4 or the 
Xeon. The ratio between the best and worst performance on Raw is about 4 to I. whereas on 
conventional architectures it is about 20 to I. One way to interpret this result is to say that Raw 's 
tiled architecture can be more consistently used to achieve high performance across kernels than 
the SIMD instructions present on the G4 and Xeon. 

The actual stability numbers are given in Table 4. where they are compared to the numbers for 
the G4 and Xeon. Another interesting metric to compute that is an indicator of overall stability 
is the geometric average i>l the data set stabilities (the seventh root of the product o\' the stability 
scores shown in Table 4). This metric gives an indicator of the machine's stability over all kernel 
types. For the Raw with the baseline kernels and data sets, the geometric average of the data set 
stabilities is 0.700. Corresponding numbers for the G4 and Xcon are respectively 0.677 and ().4l)(). 
This also shows an advantage for Raw. though not as large as that shown by the floating-point 
kernel stability. 

In summary, it is worth observing that a 425 MHz version of Raw shown in Figure 4l) is ex- 
pected to do well both in terms of performance and performance per watt. The average performance 
and average performance per watt for all three chips is shown in Table 5. While the G4 delivers 
the best average performance per watt, and the Xeon delivers the best overall performance. Raw is 
very close to the best in both categories. Combined with the knowledge that Raw also gives more 
consistent performance than the other two architectures, this is a strong endorsement o\' Raw's 
design and capability. 
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Table 4. 

Kernel stability numbers for the Raw, G4, and Xeon. 
Kernel 
Name 

Stability 
Raw G4 Xeon 

FIR 0.959 0.759 0.X7S 

QR 0.934 0.956 0.924 
SVD 0.892 0.464 0.472 
CFAR 0.737 0.864 0.971 
CT 0.974 0.747 0.933 
PM 0.981 0.958 0.SI9 

GA 0.626 0.311 0.238 
I)B 0.161 (LOSS 0.040 

All floating-point kernels 
(FIR. SVD, CFAR, PM, GA) 0.277 0.062 0.053 

Table 5. 

Average Performance and Performance Per Watt for the Raw, G4, and Xeon 
Cloek Average Average Throughput 

Chip Rate Throughput Per Watt 
Name (MHz) (Mflop/s) (Mflop/s/Watt) 
Raw 425 1.5 71 
G4 500 0.37 71 
Xeon 2800 1.53 21 
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7.   Conclusions 

We have presented a set of kernel benchmark measurements on the MIT Raw processor, an earl} 
Polymorphous Computing Architecture. The results show that despite being an academic de- 
sign. Raw is a scalable, flexible architecture capable of delivering consistent high performance 
and performance per watt. In contrast, our two conventional architectures show less consistent 
performance and either high performance or high performance per watt but not both. 

Our major area of concern for Raw is the programmability o( the architecture. Optimizing 
code for Raw is a very labor-intensive process. It takes approximately an order o\' magnitude more 
code to program Raw for high performance than to program at an equivalent level on the PowerPC!. 
Tools to automate the development of high-performance code are sorely needed. 

As more tiled architectures appear in industry and academia. high-performance programming 
o\' these architectures will continue to be an issue. In our evaluation o\' Rau, we have shown 
(he potential o\' these architectures. We have also demonstrated techniques for high-performance 
programming thai are scalable to future, larger tiled arrays. We believe these will be a good 
foundation for further work on these architectures. 
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APPENDIX    A 

Testbed hardware design 

A.l    Introduction 

This appendix describes the design of the PCA high speed I/O (HSIO) system. This system is 
designed specifically for the MIT Raw architecture with hopes that it can be easily extended to the 
other architectures being explored by the PCA program. The testbed consists of three main parts: 
the hardware, the firmware, and the software. Each of these parts are discussed in a section below. 
Following this introduction. Section A.2 describes the hardware setup including a specification o\' 
each hardware component and of the data flow on the testbed. Next, the software executing on 
the host is described in Section A.3. Finally. Section A.4 describes the firmware designs o\' the 
customizable FPGA components of the testbed. 

A.2    Hardware Setup 

The hardware portion of the testbed is made up o\' six major pieces: a computer to host the 
WildStar II/PCA. a WildStar Il/PCI board, two WildStar Data Port-Euro daughter cards, the Raw 
I landheld board, and a computer to host the Raw Handheld board. The list below outlines the func- 
tionality o\' each o\' these pieces and their interfaces with other components, fliese relationships 
are depicted graphically in Figure 53. 

1. WildStar Host Computer — Connects to the WildStar II board. 

• Interlace to WildStar II: PCI 32 bits @ }} MHz 

• Processor: Pentium 4 C«1 2.53 GHz 

• Operating System:  Redhat Linux (Custom Kernel 2.4.20 modified lor WildStar PCI 
driver) 

• Compiler: GCC 3.2.2 

2. WildStar II PCI — Connects to the host and to the WildStar Data Port daughter cards. 

• Interface to host: PCI 32 bits @ 33 MHz 

• Interface to Data Port: 2 x 153 bit MICTOR connector 

• Processors: 2 x Virtex II 6000-5 FPGAs for custom processing 

• Memory: 12 Mbytes DDR II SRAM (6 ports/PE) 
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Figure 53.    PCA testbed system components. 
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3. WildStar Data Port x 2 — Connect to the WildStar II board and to the Raw Handheld 
hoard. 

• Interface to WildStar II: 153 bit MICTOR connector to expansion FPGA 

• Interlace to Raw Handheld: 5 x 38-bit MICTOR ribbon connectors 

• Processors: I x Virtex 600E-7 and 3 x Virtex IOOE-7FPGAs 

4. Raw Handheld — Connects to both WildStar Data Port cards. 

• Interlace to each Data Port: 190 bit MICTOR connector 

• Interlace to Raw: 64 bits in + 64 bits out + 24 control bits 

• Processors: 2 x Virtex II 3000expansion FPGAs + Raw 16-tile processor (g  100 Mil/ 

5. Raw Host Computer — Connects to the Raw Handheld board. 

• Interface to Raw Handheld board: USB 2.0 

• Processor: Pentium 4 @ 2.80 GHz 

• Operating System: Redhat Linux (Custom Kernel 2.4.26 modified for USB 2.0 driver) 

• Compiler: GCC 3.2.2 

The HSIO can be used to both send and receive data. The information Hows through the HSIO 
touching all of the hardware components described above, except for the Raw Host computer. This 
path is explained below: 

1. The data are generated on the host. 

2. The data are transmitted to the WildStar II and placed in the board's local memory through 
the two processing elements (PEs). The PEs are the start and end points fur the data paths in 
the I/O system. 

3. The host gives the WildStar II a signal beginning data transmission from each PE to its 
respective Data Port daughter card. 

4. The daughter cards pass the data to the expansion FPGAs on the Raw Handheld board. 

5. The expansion FPGAs send the data to the Raw and forward the results back to the Data Port 
daughter cards. 

6. The daughter cards, in turn, pass the results back the WildStar PEs. 

7. The WildStar PEs store the results and wait for the signal from the host that the benchmark 
has completed. 

8. The host software gathers the results from the WildStar. verities their correctness, and gen- 
erates performance statistics. 
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A.3    Software Design 

Software is executed on both the host and the Raw processor. This document discusses the 
control for the High Speed I/O System. A description of the overall testbed software can he found 
in an accompanying appendix. 

Host Software — Format data, download data, send control signals, upload results 

• Language: C/C++ 

• API: Use the Annapolis supplied programming interface and driver for writing data lo and 
reading data from the board. The data transfer can be performed before and after the limed 
test. 

• Task I: Format test data. 

• Task 2: Download data to the board. 

• Task 3: Send "stream" signal to the WildStar II. 

• Task 4: Await "done" signal from the Testbed software. 

• Task 5: Upload results. 

• Task 6: Format results and forward them to the Testbed software. 

A.4    Firmware Design 

The firmware design refers to the design of the FPGA modules that are downloaded to the 
WildStar II PEs, the Data Port PEs. and the Raw Expansion FPGAs. The firmware design com- 
bines modules developed at MIT/LL, modules pan ided by Annapolis Micro Systems (AMS). and 
modules provided by the MIT Raw group. In the figures below the off-the-shelf modules are gra) 
and the custom modules are white. In general, the FPGAs are configured to simpl) pass the data 
from the memory on the WildStar II to the Raw and record the results that the Raw generates. 
The FPGAs do not aid in the compulation o\' the benchmark. Each of the firmware designs are 
described in more detail below : 

I. WildStar II PE — Interface to the memory controller and send data lo the Data Port daugh- 
ter card. See figure 54. 

• PCI Interface @ 33 MHz (Annapolis): Manage the communication with the host. 

• Memory Interface & 120 MHz (Annapolis): Manage the memory transfers between the 
on board RAM and Custom Design I. Two memories (one for send and one for receive) 
are used for each port on the Raw. This leaves two of the six memories unused. 

• Custom Design I @ 33/120 MHz: Stream data from the memory controller to the 
external interface. Make a clock transition from 33 MHz (PCI) to 120 MHz. 
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Figure 54.    WildStar II Processing Element (PE) 0. PE I has an identical design. 

• External Interface @ 120 MHz (Annapolis): Buffer and send data through MICTOR 
connector to the daughter card. 

2.  Data Port I/O PE — Pass the data along. Sec Figure 55. 

• External Interface @ 120 MHz (Annapolis): Send to and receive from the WildStar II 
PE via the external MICTOR connector. 

• Custom Design 2 @ 120 MHz: Perform any formatting necessary.  Send data to and 
receive data from the External Interface to the Raw Handheld. 

• External Interface (s1 120 MHz (Annapolis): Send to and receive from the Raw Hand 
held via the small MICTOR ribbon connectors. 

«      153 bits 
.     120 MHz 

l/OPE 
Virtex 600E-7 

Custom 
Design 2 

AMS 
External 
Interface 

I 
AMS 

External 
Interface 190 bits 

120 MHz 

Figure 55.    WildStar Data Port Daughter Curd I/O Processing Element (PE). 

3. Raw Handheld Left and Right Expansion FPGAs — Interface the High Speed I/o 
System to the Raw Processor. The data will only be transmitted via four of the the Raw static 
network ports. The I/O system will stream and retrieve data from both expansion FPGAs on 
the Raw Handheld board giving an effective data input and output rate o\ 8 words per cycle 
at 100 MHz (3.2 GBytes/s). with each expansion FPGA working at half that rate. See Figure 

56. 
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• Custom External Interface @ 120 MHz: Send to and receive from the Data Port daugh- 
ter card via the small MICTOR ribbon connectors. 

• Custom Design 3 @ 120 MHz: Transmit to and receive data from the Speed Gaskel 
module. 

• Speed Gasket @ 100 MHz (Raw Team): Interface with the Raw static network. Multi- 
plex and decode the values presented according to the control signals from the custom 
design. 

RawLE 
Virtex II 3000-4 

Custom 
External 
Interface 

Custom 
Design 3 

MIT 
Speed 
Gasket 

mit raw 

1 52 bits 
100MH; 

Figure 56.    Raw Handheld Left Expansion FPGA. The Righl Expansion FPGA has an 
idem iced design. 

A .5    Summary 

The PCA testbed HSIO interface allows input data to be sent in a streaming mode from the host 
computer to Raw and results to be sent back in the same fashion. It uses a combination of custom 
firmware on both the Annapolis WildStar II board and on the MIT Raw board to achieve this goal. 
The system described here has been implemented and was used to produce the kernel results given 
in this report. 
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APPENDIX    B 

Testbed software design 

ß.l    Introduction 

The goal of the Polymorphous Computing Architecture (PCA) project is to evaluate new "mor- 
phing" computer architectures. Through the use of a variety of benchmarks and interfacing hard- 
ware, testing can he done to determine the benefits of these new processors. In order to facilitate 
the enormous task at hand, however, there is a need for a standard software interface to allow 
testing to be done easily on a variety of platforms. 

This appendix describes the design and implementation of software used to interface a host 
computer with an architecture under test. The interface allows a program running on the host com- 
puter to communicate with a specific platform under test, sending it code and data and retrieving 
the results of an execution. The software is based on architecture modules that share similar in- 
terfaces so that thej can he swapped in and out. making it easy for programs to be launched and 
tested on a wide variety of platforms with few modifications to actual code. 

The first section is this introduction. Section B.2 is a quick-start guide to allow users to pick 
up the standard testbed configuration quickly and use it with their code. Section B.3 goes over 
the general design and introduces some of the concepts used by the testbed. Section B.4 covers 
in more detail the interactions between the tasks and the testbed. Finally. Section B.5 covers the 
interactions between platforms and the testbed. 

Some commonly used terms are defined below: 

Application  MATLAB code that, in this context, contains tasks that are launched through the 
testbed. 

Platform An environment (hardware and software) on which a task can run. 

Platform interface object A MATLAB object used to interface with a given platform. 

Platform map A tile used by the testbed to determine which platform interlace objects to use w ith 
which platforms. 

Platform name The name given to a particular environment: this name is used to refer to specific 
platforms in both the task and platform maps. 

Task A MATLAB script or executable binary that is used and launched on various platforms. 

Task map A tile that the testbed uses to determine what tasks are available, where they should be 
run. and what options are used for a particular task/platform pair. 

B.2    Tutorial 

This section gives a quick introduction to using the PCA software testbed given the standard 
testbed and PCA kernel distribution configuration. This should allow a user to get the testbed 
running relatively quickly. 

79 



<tb-root> will designate the path to the PC A testbed software: unless you are using a cus- 
tom installation of the testbed, <tb-root> should be /data /pea /test bed. <task-root> 
will be used to designate where you choose to install the PCA kernel distribution. Finally, 
<task-path> will denote the path holding the kernel code you write. 

B.2.1    Set up the task hierarchy 

1. Get a copy of all the tasks: 
Latest: cvs   -d/data/evsroot   co   -d<task-root> pea/tasks 
Stable: cp   -rf   /data/pca/tasks <task-root> 

2. Install your own copy of Raw's Starsearch software. The install should be located at 
/data/pca/raw_dist/starsearch . tar . gz. Consult New_Users .README 
within the Starsearch directory to finish setting it up. Finally, edit 
<task-root>/conf ig.mkand set the variable STARSEARCH PATH to point to it. 

B.2.2    Creating a new task 

1. Add your nev\ task to the task hierarchy. 

• Create <task-path>. which should be of the form 
<task-root>/name_of_kernel/platformjiame. 

• Add your task to <task-root >/task . map. Add your entry between 
.begin (taskoptions) and . end (taskoptions) . Your entry must follow 
this format: 

<kernel   name> <platform> <options> 

Valid options and examples are documented in the task mapping. At the verj least, you 
want path = <task-path> specified. If <task-path> is specified as a relative 
path, it is relative to the location of the task map. This is also where you want to put 
setupin and setupOut options if you are using the MIT Raw processor. 

• By convention, all code related to this Raw kernel (including any related MAI I \U 

scripts) are placed in <task-path>. 

2. Setup the build system. 

• Get a copy of depend.mk. which is needed to build and launch your task.  For the 
MIT Raw processor: 

cp <task-root>/templates/dependRaw.mk 
<task-path>/depend.mk 

Afterwards, open it and follow the documentation inside to customize it accordingly. 

• Finish up the setup by typing: 

cd <task-root>; ./setup.pi <tb-root> -f 
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B.2.3    Running the task 

1. In MATI.AK. create a testbed object by calling its constructor. Make sure the testbed is in the 
path. 

addpath <tb-root> 
tb = Testbed; 

2. Run your task with the testbed object as the first parameter. For a function taskFunct ion () 
that takes in two values and outputs two values, you would call it in the following waj: 

[outl, out2] = taskFunction (tb, inl, in2); 

If timing needs to be done, it is called as follows: 

[outl,   out2,   time]   =   taskFunction (tb,   inl,    in2); 

If everything is set up correctly, you should see your task run. 

H.3    Overview 

Hie testbed is designed to fulfill the following requirements: 

1. Allow tasks to be launched on different platforms from MATI.AB. whether directly or in an 
application. 

2. Make it easj to change where tasks are launched. 

3. Provide facilities that will make it easy to time tasks. 

4. Make the testbed extensible, e.g. make it easy for platforms to be added. 

The testbed achieves these goals by acting as a common layer between the MAI IAH application 
which launches the tasks and the various underlying platforms on which the tasks run. for each 
platform, an interface object exists that the testbed uses to launch a task with the appropriate inputs 
and outputs. These objects follow a standard API: thus, the testbed's functionality can be easil) 
extended to other platforms. Tasks require minimal modifications to run on the testbed. and maps 
make it easy to change where to launch a task or what options to use. 

The following steps (corresponding to Figures 57 and 58) describe the process of launching a 
task on a remote platform. Relevant sections are listed in brackets. 

1. The user application reaches a invocation for a particular task. This call takes an instantiated 
testbed as an extra parameter. [Section B.4.11 

2. The testbed intercepts the call and looks up the platform specified for this task.  [Section 
B.4.21 
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—   1. Application reaches a testbed call. 

(...) 

fig   UNIX Interface f~J 

4. Marshalls the data onto disk 

6. Reads in data from disk. 
SH 

5. Launch task on lest platform. 

Figure 57.    The client side of the testbed software shown running the ( FAR kernel. 

Figure 58.    The host platform \ side of the testbed software. 
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3. The testbed uses a platform interface object corresponding with that particular platform. 
[Section B.5.1.B.5.2] 

4. The platform interface object manipulates the data as needed for communication to the plat- 
form. | Section B.5.31 

5. The testbed launches the task's code on the remote platform. [Sections B.5.3| 

6. The running task loads or receives the data from the testbed. [Section B.5.31 

7. Return values and timings are passed back through similar communication channels. [Sec- 
tion B.5.3| 

8. The testbed receives this and returns it to the caller. 

B.4    Tasks 

This section covers the interaction between the application's tasks and the testbed. 

B.4.1     User Application Requirements 

A user uses the testbed by calling tasks in a testbed-specilic fashion. In order for data commu- 
nication between the client application and the platform to work correctly, the application must be 
running on a machine that can directly send data to and receive data from the platform. UNIX ma- 
chines, the Raw simulator, and the Raw USB interface all use data files to communicate; thus, the 
client and platform must be able to write and read data from a shared disk. The Raw High-Speed 
I/O interface (HSIO, described in Appendix A) uses function calls to perform I/O; thus, the client 
application must be running on the machine on which the Raw HSIO interface is connected. 

The usei program must first create a testbed object by calling Testbed and assigning it to a 
variable (e.g. tb  =  Testbed). This sets up the testbed. including instantiating platform inter 
face objects, and loading the task map. If the task map changes, the testbed must be re-created to 
reflect the change. 

From this point, for every task that needs to be run. the user application calls the method with 
the testbed object as its 1 i ist parameter. For example, if the original call was 

Targets   =   Cfar(C,   Params), 

the call should now be 

Targets   =   Cfar(tb,   C,    Params). 

This allows the testbed to intercept the invocation and handle it accordingly. 
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###################################################################### 
# TASK-PLATFORM MAPPING 
###################################################################### 
.begin(taskplatform) 

Cfar       RawSim     rawhost 
GenAlg     Unix       ville 

.end(taskplatform) 

###################################################################### 
# TASK-OPTIONS MAPPING 
###################################################################### 
.begin(taskoptions) 

path=cfar/raw; 
inPort=0,3,8,11; outPort=0,3,8,11 
path=cfar/raw-usb; 
inPort=12,15; outPort=12,15 
inType=int32,float32; outType=int32;      '=10 
setupln=setupln; setupOut=setupOut; verbose=l 

GenAlg     Unix      path=genalg/unix 
GenAlg    RawHSIO    path=genalg/raw; inPort=0; outPort=15 
GenAlg     * inType=float32,float32; outType=int32; 

setupln=setupln; setupOut=setupOut; verbose=l 
.end(taskoptions) 

Cfar RawSim 

Cfar RawUSB 

Cfar * 

Figure 59.    A sample task map with two tasks: CFAR and Genetic Algorithm. 

B.4.2    Task Map 

In order for the testbed to understand what tasks are available for running, what options to 
use. and where to run a particular task, the testbed uses a task map file. Every task thai is run 
on the testbed must be specified in the task map. By maintaining an external map file, the actual 
source code does not need to be changed in order to run tasks on a different platform or change 
task metadata. By default, the testbed uses a task map either located on the MATLAB path or 
in <task-root>/task .map. The following paragraphs will provide a brief summary of the 
grammar used in the file; Section B.6 contains the complete specification including the definition 
of the tags used here. 

To determine where to run a particular task, the map contains a mapping from each task to 
some platform and hostname. These entries are contained within an area denoted by a 
.begin (taskplat form) and .end (taskplat form) . The format of each mapping is: 

<TaskName> <PlatformName> <Hostname> 
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Note thai the mapping is whitespace-delimited. 
The task map is also used to determine specific options and metadata corresponding with a 

particular task and platform. For example, the user could specify that when the CFAR runs on 
the Raw simulator, the task's inputs should be streamed into ports 0 and 3. This area is denoted 
by a . begin (taskopt ions) and .end (taskopt ions); each entry consists of a task, a 
platform, and the platform-specific options for this task in the following format: 

<TaskName> <PlatformName> <Options> 

Note again that the components are whitespace-delimited. 
Multiple-line entries should leave whitespace in the first column of each subsequent line. Task 

options that should be affiliated to all platforms (for example, the types of the inputs and outputs) 
should be labelled with a * as the platform. Finally, comments in the task map are designed h\ 
placing a # in the first column of a line. 

Figure 59 shows an example task map. The specific supported options and needed metadata 
are platform-dependent and are documented in the task .map included in the testbed distribution 
as well as in Section B.5.4. 

In addition to the task map. the testbed provides a method for setting/overriding the mappings 
specified in the task map at run-time: 

testbed = setTaskMap(testbed, task, platform, [hostname]) 

where testbed is an instantiation of the testbed. task is the name of the task, platform is 
the name o\' the platform to run on. and hostname is an optional parameter specifying which 
machine to use. The testbed will use the task/platform options specified in the task map. 

Timing 

One o\' the requirements o\' the testbed is to be able to get timings from task executions. This 
is accomplished h\ adding an extra return value in the invocation of a task. This extra return value 
should not be reflected in the task map (e.g. as one o\~ outType's values). For example, if 

Targets   =   Cfar(tb,   C,   Params), 

was an untimed CFAR invocation, the new invocation would be 

[Targets, Timings] = Cfar (tb, C, Params). 

If Targets is of type f loat32, the specified outType should just be float 32 regardless 
o\' \\ hether the first or second invocation of Cfar () is used. 

B.4.3    PCA Kernel Distribution 

The implementations o[' the PCA kernels were written to use the PCA testbed. These tasks 
follow a relatively straightforward interface that may be useful for use in future lasks. See section 
B.2.1 on how to obtain a copy of the PCA kernel distribution. 
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File Hierarchy 

The included tasks are located in <task-root>. They are organized as subdirectories named 
after the task name. Within each task subdirectory, there is one subdirectory for every platform's 
implementation. 

Build/Launch System 

The standard tasks included with the testbed utilize a Makefile system to simplify building 
and launching tasks. The following is a list of files used by the standard task structure: 

• <task-root>/build.mk - The base Makefile used. All the standard tasks create a 
symbolic link named Makefile in their local directories that point to this file, which in 
turn links to the testbed's standard remote execution system (see Section B.5.3). By linking 
to this, all standard tasks share a common interface. 

• <task-root>/config.rnk-A global configuration lile fur all the tasks using build . mk. 
This allows build Hags and other options to be speeilied at a global level. 

• <task-root>/depend.mk - Each task lor each platform specifies what tiles are needed 
to build the needed executable. Depending on which platform is being used, the depend .mk 
file may need to define different variables. For ease of use, standard templates for the testbed- 
provided platforms (see Section B.5.4) are located in 
<task-root>/templates/depend<platform>. 

To further simplify this process, a setup script (setup.pl) is available in the task's root 
directory; this script sets up all the needed symbolic links for the tasks listed in the task map. This 
script also affiliates the task distribution with a particular testbed installation. Thus, to use a new 
testbed distribution with an existing task distribution, one merel) has to rerun the setup script and 
tell it to set up the build system to use the new testbed. 

By using this system of Makefiles, the testbed easily builds and launches tasks. More in- 
formation on how the actual standard platform interfaces use this system is available in Section 
B.5.4. 

B.4.4    MIT Raw: Data Reorganization 

In order to achieve maximum efficiency on Raw-based platforms, the data may need to he 
split up. interleaved with other parameters, and manipulated in various ways before being sent to 
specific ports. To accommodate this. setupIn=<MATLAB f unction> and 
setupOut=<MATLAB f unction> options exist for the task map. This option allows the user 
to specify two functions, one which reorganizes the input and the other the output. These functions 
are called right before input is marshalled and after output is unmarshalled. The interface of the 
input setup function must be: 

function out = taskSetupIn (inData, ports) 
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whore inData is a cell array of the passed-in parameters (not including the testhed object), 
ports are the input ports being used, and out is a cell array where out { x} should correspond to 
data going to input port ports { x }. As an example, calling Cf ar (testbed,   C,   params). 
inData{l}   =  C and inData { 2 }   =  params. The port numbers are documented in 
depend. mk file. 

Several issues o\' note: 

• Data is written out in a column-major format. 

• If multiple input types are specified, out {x} {y} will be serialized using the types one af- 
ter another, repeating them once all are used. For example, if there are two types specified, 
inType=int32,    float 32, and there are four elements out {x } { 1 } out { x } {4 } 
being sent to port ports { x }, out { x} {1 } will be serialized as type int32, out { x} { 2 } 
as float 3 2, out {x} {3} as int 32 and out {x} { 4 } as float 32. If out { x } is a 
non-cell array, it will be serialized as the first type specified. The testbed will output an 
error message if the number of elements being sent to a specific port is not a multiple o\' the 
number of types. 

• To send complex data to the Raw. merely pass it back as one of the out's values. The testhed 
sends in complex data by interleaving the real and imaginary parts of each element. Note 
that the testbed uses MATLAB's iscomplex () function to determine whether to send the 
data in as real or complex numbers. It is advisable to ensure that the data sent is always 
either real or complex (see MATLAK'S complex () function to mark a matrix as complex 
regardless of whether there is an imaginary part or not). 

The interface of the output setup function must be: 

function rv = taskSetupOut(fileData, ports) 

where fileData is a cell array where f ileData{x} corresponds to output coming from port 
ports {x}, ports is a listing of the output ports and rv is a cell array where rv{y} should 
correspond to the \ "' return value of the original MATLAB call. For example, if the original MAT- 

LAB call was (A, B) = Kernel (tb) , rv {1} corresponds to A and rv{ 2 } to B. Again, add 
the setupOut key to the appropriate entry in the task map (e.g. setupOut=taskSetupOut). 

There are several issues of note: 

• The cycle count is not counted as a return value. This means that the cycle count should be 
returned as the n+l"1 return value if the function normally has n return values. 

• The testhed currently only supports one output type. If multiple output types are specified 
for a kernel, it will automatically default to single-precision (32-bit) floating point. Make 
sure that all output (including the cycle count) is of the same type. 

B.5   Testbed 

fhis chapter will detail the components of the platform interface objects and the associated 
platform map. All these tiles are located within the <tb-root> subdirectory. These objects are 
used to facilitate the launching of tasks on and sending/receiving of data to/from -emote platforms. 
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############################################################ 
# PLATFORM-IFO MAPPING 
# platform  interface    options 
############################################################ 
RawHSIO   RawIFO      mode=hsio 
RawUSB RawIFO mode=usb 
RawSim RawIFO mode=sim 
Unix      UnixIFO     path=/usr/bin/Xl1:/tools/gnu/bin 

Figure 60.    A sample platform map for a testbed that supports four different platforms. 

B.5.1    Platform Map 

The platform map is located in <tb-root>/platform.map. Each supported platform 
contains a line in the platform map speeifying the name of the platform, the actual M \i l \H class 
to use to interface with it. and platform-specific metadata. Each entry must follow the following 
format: 

<PlatformName> <PlatformlnterfaceObject> <Options> 

See figure 60 for an example of a platform map and chapter B.6 for a complete description of the 
grammar used, including a definition o\' <Platf ormName>, 
<PlatformlnterfaceObject>, and <Options>.   Note that multiple platforms may use 
the same platform interface object. 

When a testbed object is instantiated, each platform listed is constructed by calling h\ the listed 
MATLAB object's constructor. Thus, if new platform interfaces are created or the platform map 
changed, a new testbed object must he created. 

B.5.2    Platform Interface Objects 

Platform interface objects form the basis of the testbed. Through the use of these objects, the 
testbed is capable of running on any platform that has an associated object. Platform interlace 
objects are MATLAB objects located within <tb-root>/pifo that must have two methods de- 
fined: a constructor and pif oRun () that runs a task using that particular object. The constructor 
is passed a single argument: a structure rilled with the option keys and values listed in the platform 
map. pi f oRun () is called with live parameters: 

1. The platform interface object itself. 

2. A string containing the name of the task as specified in the task map and as called by the 
user in MATLAB. 

3. A cell array containing the arguments passed by the user during invocation. 

4. A structure containing the options specified in the task map. 

5. The name of the host on which to run the task. 
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It returns the values returned by the given task, plus timing if that has been enabled. 
By forcing all platform interface objects to follow a standard API. it makes the testbed easily 

extensible: a new platform can be interfaced by creating an object with the same API. 

B.5.3    Common Functionality 

The methods by which code is launched on remote platforms and data is sent and received 
from a particular platform heavily depend on the platform itself. A platform interface object can 
L\O whatever is necessary to perform the needed operation as long as it follows the API. However, 
there is some commonly used functionality that can be shared between various platform interface 
objects. Some o\' these have been provided by the testbed and are described below. Note that a 
custom platform interface object need not use these; they are merely provided for convenience. 

Remote Execution 

It is expected that tasks will often be launched on different platforms and not on the same 
machine that the application is running on. Thus, there is a definite need for 1 emote launching 
capability. 

flic testbed provides two shell scripts that help provide the needed functionality. They are 
located in <tb-root>/pifo and are named runRsh . sh and runPlatf orm. sh. These two 
scripts set up the remote execution as well as parse passed-in options and create the necessarj 
command-line to run the task. 

In addition, a set of Makefiles are used in order to provide building and launching capability. 
Together with the shell scripts, they provide the ability for platform interface objects to rsh into 
remote machines, communicate various options, and build/launch a given task. In order for a 
platform interface object to use this, the task to be launched must have a Makef i le that interfaces 
correctly with runPlatf orm. sh. This can be ensured by linking to the testbed interface's 
Makefiles, which are located in <tb-root> and are named make<plat f orm> .mk. The 
PCA kernel benchmarks discussed in Section B.4.3 demonstrate how this interfacing is done. 

Interprocess Communication 

In order to facilitate I/O with remotely launched tasks, the testbed provides two interprocess 
communication objects, both of which are located in <tb-root>/ipc. This directors also con- 
tains common functions used by these two objects. The FilelO object provides tile I/O serializa- 
tion. Given some data, it generates a data file with a small header that describes the data and allow s 
for proper unmarshalling. Note that data is written in column-major order. The RawHSIO object 
utilizes the High-Speed I/O interface and associated libraries developed to provide high-speed, 
streaming I/O to the MIT Raw board. Both objects provide the same API function calls: 

FilelO () or RawHSIO () - Constructs the appropriate IPC object. 

initlO(ipc,   in,   out) - Initializes the input and output accordingly. This should be called 
once per task but does not need to be called every iteration. 

sendln (ipc,    in) - Sends in the data into the kernel. This should be called every iteration. 
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data  =  recvOut (ipc,   out) - Receives output from the kernel. 

destroylO (ipc,   in,   out) - Cleans up the I/O. 

B.5.4    Provided Interface Objects 

This section describes the standard interface objects that are provided by the testbed. They are 
reference implementations for several platforms ol interest. 

The following values must be defined for every task hy all the interface objects: 

path The path of the task; if a relative path is specified, it must be specified relative to the location 
o\' the task map. 

inType The input types. Valid values are int32 and f loat32. 

outType The output types (not including the timing). Valid values are int32 and f loat32. 

The following is an additional option supported by all interface objects: 

repeat Number of iterations to repeat a particular task (default I). 

MatlablFO 

This object is used by the platform named Mat lab. This interface is rather simple and es 
sentially just passes the call on to the appropriate MATLAB function. It also performs timing as 
needed. 

UnixIFO 

This interface is appropriate for machines with UNIX-like interfaces and with access to a 
shared disk (such as Linux and Mercury). The platforms that use this object are named Unix 
and Mercury. 

Machines utilizing this interface generally share a shared disk (e.g. on NFS) with the client 
machine. Thus, code is launched by merely using rsh to connect to the machine and launch the 
task. Sending data is done by serializing the data and writing it to a shared location, followed In 
launching the task with a pointer to the data files. Output is done in a similar way. 

Note that most kernels launched in this way are written in C++ and use the templated 
KernelDemo interface to handle I/O and setup. This interface specifies which public methods a 
kernel must have as well as providing support for timing and running multiple iterations. See 
<tb-root>/include/KernelDemo . h for more details. 

The following are additional task options supported by this interface object: 

verbose Turn on verbose mode, i.e. show all output from using the testbed. 0 disables this, any 
non-zero value enables it (default 0). 

debug Turn on debug mode, i.e. runs the appropriate debugger with the task. 0 disables this, any 
non-zero value enables it (default 0). 

clean Perform a make   clean to clean up a path before building/launching. 0 disables this. an\ 
non-zero value enables it (default 0). 
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Figure 61.    Methods used to send data to the various Raw instantiations. 

The platforms that use this object are named RawSim, RawUSB. and RawHSIO. This interface 
is for use v\ illi the MIT Raw processor, rsh is used to access the desired machine. For RawSim, 
this machine is used to run a simulator with the given eode. To send and receive data, the simulator 
uses bC code that can simulate an I/O device in order to communicate with its environment. The 
platform interface object communicates then by writing the data to files and connecting these I/O 
devices to particular tiles and ports in the simulator. Afterwards, these "devices" are read in. For 
RawUSB. MIT-provided binaries allow us to launch tasks on the board as well as perform I/O using 
a similar interface as the simulator. For RawHSIO, instead of using the simulator interface for I/O. 
we use a different High-Speed I/O interface. 

Note that due to the distributed nature of the MIT Raw architecture, the RawIFO allows the 
user to provide MATI.AB functions in order to reorganize both the Raw's inputs and outputs. This 
also forces certain restrictions on the types of the outputs. Usage is discussed in further detail in 
Section B.4.4. 

The following are additional task options supported by this interface object: 

verbose   Turn on verbose mode. i.e. show all output from using the testbed. 0 disables this, an) 
non-zero value enables it (default 0). 

debug   Turn on debug mode, i.e. runs the appropriate debugger. 0 disables this, any non-zero value 
enables it (default 0). 
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clean Perform a make  clean to clean up a path before building/launching. 0 disables Ibis. an\ 
non-zero value enables it (default 0). 

inPort The input port(s) to use on the MIT Raw. The supported ports depend on the mode. 

outPort The output port(s) to use on the MIT Raw. The supported pints depend on (he mode. 

setupin The function used to reorganize input (data being sent from the MAM AH application to 
the task). Valid values are any legal MATl.AB function name. 

sctupOut The function used to reorganize output (dala being returned from the task to (he MAT- 
LAB application). Valid values are any legal MATLAB function name. 

metadata Indicates which parameter is metadata.  This is used to support datasets on the Raw 
platform but isn't fully implemented. Avoid using this functionality. 

The following are additional platform options supported by this interface object: 

mode Specifies what mode to run the Raw interface in (sim for simulator, usb for USB. hsio 
for high-speed I/O). 

In addition, because of the relative difficulty in programming the MIT Raw. (he interface also 
provides in pea . h some useful functions/macros for programming the Mil' Raw: 

pca_test_done (x) - Equivalent to C's exit (x) function; x is the return value. 

pca_tiles_side () - The number of tiles on the side of the Raw processor. 

pca_get_x () - Gets the x-coordinate o\' (he calling tile. 

pca_get_y () - Gets the y-coordinate o\' the calling tile. 

pca_get_id () - Defined to be 

pca_get_id() =pca_get_y() • pca_t iles_side () +pca_get_x() 

pca_init_switch () - Initializes the switch processor: either pca_init_switch_pc () 
or this must be called before any switch calls (e.g. pca_set_switch_pc () . 
pca_barrier () ). 

pca_init_switch_pc (label) - Initializes the switch processor and sets its PC to label. 
It is safe to use this function to set the switch PC at any time. Either this or 
pca_init_switch () must be used before any switch calls. 

pca_set_switch_pc (label) - Sets the switch PC to label. 

pca_barrier () - Sets up a barrier by which all tiles must reach before continuing. This 
function changes the PC on the switch processor. Note that all incoming data should be 
cleared from a tile's switch before this is called. 
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pca_init_io (port) - Used to initialize I/O at port port; must be called before that port is 
used. This can be safely called from all tiles, port can either be a number or PORT_NW, 
PORT_NE, PORT_SW or PORT_SE. 

pca_init_io_dir (dir) - Used to initialize I/O in a given direction: dir is the bitwise-or 
oi' NORTH, SOUTH, WEST and/or EAST. 

pca_sync_io (port) - Used to finish up I/O at the completion of the task. This is commonly 
called several times at the end of a kernel with the different ports used and is usually followed 
In a pca_barrier (). Make sure you read in all the data waiting at port; otherwise, I/O 
may not Hush completely before this call returns. 

pca_sync_io_dir (dir)  - Same as pca_sync_io () . except takes in a direction like 
pca_init_dir() . 

B.6   Map Grammar 

The testbed maintains a simple and consistent grammar to specify both the task and platform 
maps, which are essential structures in the operation of the testbed. This chapter serves as a 
reference lor the grammars used in those tiles. Note that <Tag>* represents one or more distinct 
instances of <Tag> objects, and parentheses are used for grouping and are not actually part of the 
actual grammar. 

B.6.1    Whitespace, Continuations, and Comments 

<ws> is defined to be spaces and tabs. <EmptyLine> is one that is lilted with zero or 
more <ws> objects. Overly long lines can be broken into multiple individual lines; each line 
that contains <ws> in the first column is considered a continuation of the previous line. All other 
non-empty lines must contain some form of text in the first column. 

Comments are lines ignored by the testbed. Note that the # must be in the first column. 

CommentLine := # Comment Text 
IgnoredLine := <CommentLine> | <EmptyLine> 

B.6.2 Options 

Optionsare specified very simply as semicolon-separated <Key> = <ValueList> pairs, where 
<Key> follows MATLAB naming conventions and the <ValueList> is a comma-separated list 
of <Value> objects, which in turn must be valid MATI.AB strings or numbers. 

ValueList  := (<Value>,)*<Value> 
Options    := <EmptyLine> 

I (<Key> = <ValueList>;)* <Key> = <ValueList> 
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B.6.3    Task Map 

The task map contains two sections: one that represents the mapping of tasks to specific plat- 
forms and hosts, and one that represents the options used for a particular task/platform pair. The 
following are lines that are legal in the task mapping and task option sections, respectively. 

TaskMapLine := <TaskName><ws><PlatformName><ws><Hostname> 
I <IgnoredLine> 

TaskOptLine := <TaskName><ws><Plat f ormNamexwsxOpt ions> 
I <IgnoredLine> 

where <TaskName> must follow MATLAB naming conventions, <Plat f ormName> must fol- 
low MATLAB naming conventions or be a *, and <Hostname> represents a legal hostname lor a 
machine. Note that <Plat f ormName> in the task map should match up to some <Plat f ormName> 
in the platform map. If * is specified as the <Platf ormName>, those options are applied to all 
platforms. If", for a particular task, a specific key is defined lor both a specific platform and all 
platforms, the values specified for a particular platform take precedence. 

Finally, we can specify the format o\' the entire task map from these constructs. Note that each 
line should be separated b\ a newline. 

TaskMap   := 
<IgnoredLine>* 
.begin(taskplatform) 
<TaskMapLine>* 
.end(taskplatform) 
<IgnoredLine>* 
.begin(taskoptions) 
<TaskOptLine>* 
.end(taskoptions) 
<IgnoredLine>* 

B.6.4    Platform Map 

The platform map has a similar structure to the task map. This is the only legal line in the 
platform map: 

PlatformMapLine := <PlatformNameXwsxPlatformlnterfaceObject> . . . 
<ws><Options> | <IgnoredLine> 

where <Platf ormlnterf aceObject> follows M \II.AK naming conventions. 
We can use this line to specify the format of the entire platform map. Note that each line should 

be separated by a newline. 

PlatformMap := 
<IgnoredLine>* 
<PlatformMapLine>* 
<IgnoredLine>* 
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B.6.5    Example 

See Figure 59 lor an example of a task map and Figure 60 for an example o\' a platform map. 

95 





REFERENCES 

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivost. and Clifford Stein. Introduction 
to Algorithms. The MIT Press, 2nd edition. 2001. 

2. Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New 
York. 1991. 

3. Jose L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-algorithm program- 
ming environments. IEEE Computer. 27(6):28—13. June 1994. 

4. David E. Goldberg, editor. Genetic Algorithms in Search, Optimization, and Machine Learn- 
ing. Van Nostrand Reinhold, New York. 1991. 

5. Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University 
Press. 3rd edition. 1996. 

6. Ryan Haney, Theresa Meuse. Jeremy Kepner, and James Lebak. The HPEC challenge bench- 
mark suite. In Proceedings of the Ninth Annual High-Performance Embedded Computing 
Workshop (HPEC 2005), Lexington, MA. September 2005. 

7. Henry Hoffmann. Stream Algorithms and Architecture. Master's thesis. Massachusetts In- 
stitute of Technology. Cambridge. MA, 2003. 

8. Intel Corporation. Intel Xeon Processor with 512-KB 12 C 'ache at 1.80 GHz to 3 GHz. March 
2003. 

9. Jason Sungtae Kim, Michael Bedford Taylor, Jason Miller, and David Wentzlaff. Energ) 
characterization o\' a tiled architecture processor with on-chip networks. In International 
Symposium on Low Power Electronics and Design (ISLPED 2003). pages 424—127. Seoul. 
Korea, August 2003. Association for Computing Machinery. 

10. James Lebak. Hector Chan. Ryan Haney, and Edmund Wong. Polymorphous computing 
architectures (PCA) kernel benchmark measurements on the PowerPC G4. Project Report 
PCA-Kernel-2. MIT Lincoln Laboratory, Lexington, MA. January 2004. 

I I. James Lebak. Albert Reuther. and Edmund Wong. Polymorphous computing architectures 
(PCA) kernel-level benchmarks. Project Report PCA-Kernel-I. MIT Lincoln Laboratory, 
Lexington. MA. January 2004. 

12. Mercury Computer Systems. 500 MHz PowerPC 7410 Daughtercardproduct data sheet. 
March 2002. 

13. Jason Miller. Private communication, August 2004. 

14. Motorola Semiconductor Products. AltiVec Technology Programming Interlace Mamnd. 
June 1999. 

')7 



15. Motorola Semiconductor Products. MPC74I0 RISC Microprocessor Hardware Specifica- 
tions, January 2002. 

16. Rodric M. Rabbah, Ian Bratt, Krste Asanovic, and Anant Agarwal. Versatility and 
VersaBench: A new metric and a benchmark suite for flexible architectures. Technical 
Memo MIT-LCS-TM-646, Massachusetts Institute of Technology Laboratory for Computer 
Science. Cambridge, MA, June 2004. 

17. David A. Schwartz, Randall R. Judd. William J. Harrod. and Dwight P. Manley. Vector, sig- 
nal, and image processing library (VSIPL) 1.0 application programmer's interface. Technical 
report. Georgia Tech Research Corporation, 2000. http://www.vsipl.org. 

18. M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. IEEE Computer, 27(6): 17- 
26, June 1994. 

19. Volker Strumpen. Henry Hoffmann, and Anant Agarwal. A stream algorithm for the SVD. 
Technical Memo MIT-LCS-TM-641. Massachusetts Institute of Technology Laboratory for 
Computer Science. 2003. 

20. Michael B. Taylor, Jason Kim, Jason Miller. David Wentzlaff, Fae Ghodrat. Ben Greenwakl. 
Henry Hoffmann. Paul Johnson. Jae-Wook Lee. Walter Lee. Albert Ma. Arvind Saraf, Mark 
Seneski. Nathan Shnidman, Volker Strumpen. Matt Frank. Saman Amarasinghe. and Ananl 
Agarwal. The Raw microprocessor: A computational fabric for software circuits and general 
purpose programs. IEEE Micro. 22(2):25-36, March/April 2002. 

21. Michael Bedford Taylor. Walter Lee. Jason Miller, David Wentzlaff, Ben Greenwald, Henry 
Hoffmann, Paul Johnson. Jason Kim. James Psota, Arvind Saraf. Nathan Shnidman. Volker 
Strumpen. Matt Frank. Saman Amarasinghe. and Anant Agarwal. Evaluation o\' the Raw 
microprocessor: an exposed-wire-delay architecture for ILP and streams. In Proceedings 
of the 31st International Symposium on Computer Architecture (ISCA 2004), pages 2-13, 
Munich, Germany. 19-23 June 2004. IEEE Computer Society. 

22. Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform. Society 
for Industrial and Applied Mathematics. 1992. 

23. Dale Varberg, Edwin J. Purcell. and Stephen Rigdon. Calculus. Prentice-Hall. 8th edition. 
1999. 

98 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information   Send comments regarding this burden estimate or any other aspect of this collection of information including suggestions for reducing 
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway. Suite 1204 Arlington. VA 22202- 
4302   Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number   PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

14 June 2006 
2. REPORT TYPE 

Project Report 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 

Polymorphous Computing Architecture (PC'A) Kernel Benchmark Measurements 
on the Mil Raw Microprocessor 

5a. CONTRACT NUMBER 

FA8721-05-C-0002 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

R..I. I laney, J.M. Lebak, M.A. Alexander. H. Chan. P.A. Jackson, E.L. \\ ont 
5d. PROJECT NUMBER 

1084 
5e. TASK NUMBER 

0 
5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Ml I Lincoln Laboratory 
244 Wood Street 
Lexington, MA 02420-9108 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

PCA-K.emel-3 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

DARPA ll'K) 

3701 Fairfax Drive 

Arlington, VA 22203-1714 

10. SPONSOR/MONITORS ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 

NUMBER(S) 

ESC-TR-2006-063 
12. DISTRIBUTION / AVAILABILITY STATEMENT 

approved for public release: distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

I he I) ARP \ Polymorphous Computing Architecture (PAC) program is a research initiative aimed at developing neu computer 
architectures with a high degree of flexibility. Unlike current computer architectures that are rigid in nature. PCAs will have the capability 
to adapt ("morph") to match the problem being solved. This flexibility will allow higher overall system performance in a broad range of 
applications. 

Ml I Lincoln Laboratory has defined a set of kernel benchmarks for the PCA program. The kernel-level benchmarks have been chosen to 
stress both computation and communication aspects of the architecture. The particular benchmarks chosen are based on the frequency of 
then use in current and future applications. They are drawn from the areas of signal and image processing, communication, and information 
ami knowledge processing. Lach of these areas imposes different processing requirements on the architecture in terms of operations 
performed and memory bandwidth required. 

This document describes a set of measurements of the PCA kernel benchmarks on a prototype PCA chip. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
I Inclassified 

b. ABSTRACT 

Unclassified 

c. THIS PAGE 

I Inclassified 

17. LIMITATION 
OF ABSTRACT 

Same as report 

18. NUMBER 
OF PAGES 

ION 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (include area 
code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 


